19/11/24 12:53:00.66 GGJQySam.net
>>139
>(IUTで1/2が出る箇所があって、山下先生が、「リーマン予想の1/2と関連している」と指摘して、望月先生が喜んだとか(^^;
> 来年のシンポジュームでは、Max 山下先生によるリーマン予想の解決が期待できるぞ)
”Max 山下先生によるリーマン予想の解決が期待できるぞ”は、当然ジョークですけどね
根拠は、下記だな(^^
おサルは、そんなことも知らずに、IUTスレに大きな顔をして参加しているのか?
確か、リーマン予想とIUTとの関連発言は、IUTスレの過去スレでも出たぜ(複数回)*)
なお、望月論文のIIだったかIIIだったかに、脚注として望月先生がこれを取入れたと思ったが
*)最初の発言と、その後に
これをネタに数年前に、山下氏が科研費を貰ったが
中間報告で、「問題が難しいから、進展が遅れている」という山下氏の報告が、IUTスレで批判されていたな確か
(参考)
URLリンク(ja.wikipedia.org)
望月新一
(抜粋)
宇宙際タイヒミューラー理論
2016
161:年7月に京都大学で理論の国際研究集会[13]が開催された。 共同研究者の山下剛は(長期的な計画と断った上で)Riemannゼータ関数との関連性について、次のように述べている:「望月新一氏の計算においてabc予想の誤差項にRiemannゼータ関数との関連性を示唆する1/2が現れる。 一方、同氏の宇宙際Teichmuller理論においてテータ関数が中心的役割を果たすのであるが、テータ関数はMellin変換によってRiemannゼータ関数と関係する。 さらに、宇宙際Teichmuller理論において宇宙際Fourier変換の現象が起きている。 これらのことから、長期的な計画であるが "宇宙際Mellin変換" の理論ができればRiemannゼータ関数と関係させることができるのではないか と期待して共同研究を進めている」[16]。 Inter-universal geometry と ABC予想 42 https://rio2016.5ch.net/test/read.cgi/math/1572150086/367- 367 名前:132人目の素数さん[] 投稿日:2019/11/24(日) 12:05:21.99 ID:TVgOpa6s [6/6] 検索ハッタリスト君曰く https://rio2016.5ch.net/test/read.cgi/math/1573769803/139 >リーマン予想の解決まで行けば >IUT反対派はノックアウトでしょうね
162:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/24 13:31:10 GGJQySam.net
>>141
>なお、望月論文のIIだったかIIIだったかに、脚注として望月先生がこれを取入れたと思ったが
ご指摘がありました望月論文?だったかも
?のファイル内検索 ”Riemann” 18ヒット
最初のところだけ、引用しておいた
Inter-universal geometry と ABC予想 42
スレリンク(math板:368番)-
368 名前:132人目の素数さん[sage] 投稿日:2019/11/24(日) 12:41:56.89 ID:nJi2wOMf
?.探さないでください
”Riemann”でファイル内検索かけると
URLリンク(www.kurims.kyoto-u.ac.jp)
Mochizuki, Shinichi (2012d), Inter-universal Teichmuller Theory IV: Log-volume Computations and Set-theoretic Foundations (PDF)
(抜粋)
P34
Finally, in the context of the normalized determinants that appear in (a),
it is interesting to note the role played
by the prime number theorem ? i.e., in essence, the Riemann zeta function [cf. Proposition 1.6 and its proof]
? in the computation of “inter-universal analytic torsion” given in the proof of Theorem 1.10.
P48
In this context, it is of interest to observe that the form of the
“ term” δ1/2 ・ log(δ) is strongly reminiscent of well-known intepretations of the
Riemann hypothesis in terms of the asymptotic behavior of the function defined
by considering the number of prime numbers less than a given natural number.
Indeed, from the point of view of weights [cf. also the discussion of Remark 2.2.2
below], it is natural to regard the [logarithmic] height of a line bundle as an object
that has the same weight as a single Tate twist, or, from a more classical point of
view, “2πi” raised to the power 1. On the other hand, again from the point of view
of weights, the variable “s” of the Riemann zeta function ζ(s) may be thought of
as corresponding precisely to the number of Tate twists under consideration, so a
single Tate twist corresponds to “s = 1”.
163:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/24 15:19:50.24 GGJQySam.net
あれま~!
このスレが4位だよw(^^;
もっとも、”8位 = 現代数学の系譜 カントル 超限集合論 475 9”って
なんなのだろうね
いま、本当に無人になっているのに
5CH数学板の過疎の惨状
いま無人になっている板が8位で
ほとんどのスレが、これに、勢いで、負けているんだよねw(^^
URLリンク(49.212.78.147)
164:数学:2ch勢いランキング 11月24日 15:10:29 更新 順位 6H前比 スレッドタイトル レス数 勢い 1位 = フェルマーの最終定理の簡単な証明2 783 43 2位 = 0.99999……は1ではない その3 395 17 3位 = プログラミングBASIC言語について。 174 16 4位 = 現代数学の系譜 工学物理雑談 古典ガロア理論も読む79 142 15 5位 = 【未解決問題】奇数の完全数が存在しないことの証明5 1001 14 6位 = Inter-universal geometry と ABC予想 42 372 13 7位 = 高校数学の質問スレPart402 374 12 8位 = 現代数学の系譜 カントル 超限集合論 475 9
165:132人目の素数さん
19/11/24 15:50:29.39 YMClmsa4.net
よ
166:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/24 16:08:11.78 GGJQySam.net
おつ
167:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/24 16:22:38.47 GGJQySam.net
Inter-universal geometry と ABC予想 42
スレリンク(math板:371番)
371 名前:132人目の素数さん[sage] 投稿日:2019/11/24(日) 14:15:33.07 ID:INYq4ybQ
URLリンク(twitter.com)
新しいアマゾンのレビューでScholze-Stixに言及して、ちょっとわかったようなご意見を頂戴しましたが、この方は1年半前の状況から現在までなにも変わってないとお思いのようですね。
これか(^^;
https://アマゾン(URLがNGなので、キーワードでググれ(^^ )
宇宙と宇宙をつなぐ数学 IUT理論の衝撃 加藤 文元
の書評
板風
5つ星のうち2.0あれ、この本売れてるんだ(笑) 2019年11月24日
ABC予想の証明については、2018年のScholzeとStixのペーパーの発表により、原論文3.12の箇所の証明不備が明らかにされ、望月側も証明文を回答できず、問題は未解決のままであることが確定している。
日本語だけの世界にいるとこれらのことは知らされないが、もはや世界では常識である。
こういう本を買う層だから、八重洲あたりのエリートビジネスマンたち、大卒もしくは院卒だと思うが、それなのに結構売れてしまうのは、日本の広い意味での「知識層」が、諸外国に比べても英語音痴である事を物語っているように思う。
そしてIUT理論というのは、このABC予想の「証明」と一体であり、ABC予想証明の失敗はIUT理論の失敗でもあるのだ。しかも理論のとっかかりで破綻しており、ほとんど得るものがないという最悪の結果になってしまっている。大山鳴動して鼠一匹である。
3人のお客様がこれが役に立ったと考えています
(引用終り)
(deleted an unsolicited ad)
168:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/24 18:06:01 GGJQySam.net
>>146 関連
ツィッターなので順序が逆であることにご注意
(分かり難いので、元のURLを見て下さい(^^ )
URLリンク(twitter.com)
Fumiharu Kato 加藤文元 2019 11月9日
(抜粋)
現在ではIUT理論やその周辺の専門分野に関わる専門家たち(念のために述べますが、日本人に限りません)の間では、Scholze-Stixによる勘違いであったのだろうという認識であり、現在に至っても「破綻」していたりギャップがあったりしている箇所は指摘されていません。
(2) 「もはや世界の常識である」とあります。確かに、Scholze-Stixによる宣伝効果から、望月さんの理論を信じないという人々が(あまり多くはないにしても)いることはあり得るでしょうが「世界の常識」が「どの世界」の常識なのかを明らかにしていない以上、事実関係としては無効であると思われます。
昨年の9月に回答することなく一方的にこの件から離脱しました。その意味では回答をしていないのはScholze-Stixの側であり、望月さん側はきちんと回答をしています。(もちろんScholze-Stix側も離脱するにあたっては考えがあってのことだと思いますから、我々は特に避難しているわけではありません。)
この文章は2018年の初夏には出来上がっていましたが、Scholze-Stix側の要請で、9月まで公開を見送っていたものです(上記URLのものは、さらに修正を加えたものになっています)。しかし、これに対して、Scholze-Stix側はさらに回答を約束しておきながら、
(1) Scholze-Stixの反論ノートに対して、望月さんは回答しなかったというのは事実に反します。望月さん側は45ページに及ぶ詳細な回答
URLリンク(www.kurims.kyoto-u.ac.jp) …
URLリンク(www.kurims.kyoto-u.ac.jp) …
を公開しています。
著者です。カスタマーレビューはカスタマーが自由に意見を述べる場ですので、事実関係、およびそれに関する著者意見、さらに本レビューにおける、私の知りうる限りでの理論の中味との不整合についてのみ訂正をさせて頂きたく思います。
(deleted an unsolicited ad)
169:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/24 18:28:54.42 GGJQySam.net
>>147 補足
1.まあ要するに、加藤文元先生の言い分
Scholze-Stixには、反論してあるが、再反論はなく、Scholze-Stixは逃げた
(だが、英語圏ではそうは見られていないように思うが。というのは、諸手を挙げて、望月マンセーの人増えていない(従来から賛成の人以外には、賛成の人少ない) (^^; )
2.で、「Scholze-Stixによる勘違いであったのだろう」というなら、
それを3.12の追記として、
(SSの意図は)推察でいいから「こういう初歩的な勘違いと思われる」とはっきり書いてほしいね
あとから勉強する人のため(同じところでつまづくだろうから)
3.早く、リーマン予想をIUTで解決して(部分解決でも可)、SSをギャフンと言わせてやって下さいw(^^;
あと、まあ、IUTスレでの疑問点
アマゾンの書評に書いて
加藤文元先生からの反論を貰うのが
手法としては面白そうだなー(^^;
170:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/24 21:58:01.64 GGJQySam.net
>>147
>現在ではIUT理論やその周辺の専門分野に関わる専門家たち(念のために述べますが、日本人に限りません)の間では、Scholze-Stixによる勘違いであったのだろうという認識であり、現在に至っても「破綻」していたりギャップがあったりしている箇所は指摘されていません。
日本国内の空気を読むと
シラケテいる感じがあるよね
日本国内に対しても、RIMSの一部以外では、”Scholze-Stixによる勘違いであったのだろうという認識であり”は、これが共有されているとは言えないのでは?
特に、東大系からは、「否定も肯定もしない」という空気で、だれもなにも発言しない
日本数学会のプログラムにもIUTの欠けらもない
まあ、日本数学会で発表や討議するようなものじゃないというのかもしれないがね
まあ、外野から見ていると、
望月新一先生が、ものすごいホームランを飛ばした
というよりは
「ファールじゃないか?」と、ボールの行方を見ているという空気じゃないかと読んだぜw(^^;
まあ、ファールでもいいじゃないか?
人間だもの(^^
URLリンク(mathsoc.jp)
日本数学会
2019年度秋季総合分科会・プログラム情報
URLリンク(mathsoc.jp)
2019年9月16日
最終版プログラム(修正第2版) (PDF, 1.2M)
171:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/25 07:31:28.25 1A25DpO+.net
メモ:
アマゾンは、GAFAの前の”A”。最初は書籍のネット販売だったのにね(^^;
URLリンク(www.nikkei.com)
アマゾンジャパン、AI人材育成へ無償教育開始 日経 2019/11/22 17:56
アマゾンジャパン(東京・目黒)は中高生向けに、人工知能(AI)の活用に必要なプログラミング教育を無償で始めた。首都圏を中心に試験的に始めた。IT(情報技�
172:p)教育を提供するライフイズテック(東京・港)、日本YMCA同盟と連携して2020年以降、全国に広げることを検討している。 22日に都内で「アマゾンアカデミー」を開いた。アマゾンジャパンのジャスパー・チャン社長は「エンジニアだけでなく、あらゆる場面でAIを活用できる人材育成が大事な時代」と話した。年内は試験プログラムで、計180人の中高生にプログラミング教室を提供する。 無償教育とは別に、チャン社長は18年12月期に日本で3120億円を投資したことを明らかにした。ネット通販の物流施設やクラウド事業のアマゾン・ウェブ・サービス(AWS)などの設備投資だけでなく、研究開発や人材関連の投資も含んでいる。 10~18年の日本への累計投資額は1兆6000億円で、内訳は公表していない。今後も「AIやロボティクスなどに投資を続けていく」(チャン社長)という。 米アマゾン・ドット・コムの日本での売上高は18年12月期に前の期比16%増の138億ドル(約1兆5000億円)だった。同社は日本の損益を開示していないが、自社物流網の整備、有料会員「プライム」向けの動画、音楽の見放題サービスなど事業を拡大している。
173:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/25 15:22:02.50 NuOctDvT.net
>>149
>望月新一先生が、ものすごいホームランを飛ばした
>というよりは
>「ファールじゃないか?」と、ボールの行方を見ているという空気じゃないかと読んだぜw(^^;
補足
・ホームランが、確定したわけではない
・では、ファール確定かというと、IUT軍団というかIUTを取り巻く人が大杉で(^^;
かれらが、集団催眠の如くかというと、話が数学だから、各々えら~い先生たちが、それぞれ自分の判断で、「ホームランじゃね?」と考えて行動していると思う
・まあ、仮にファールでも、もう一回バットを振るチャンスあるから、修正してホームランにできるだろうと思っているのでは?
日本数学会の白け具合(様子見?w)と、RIMSの来年のシンポジューム(メンバーは豪華)を天秤にかけると
上記のようなことかな? というのが、おいらのKY(空気読み)です(^^
(参考)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む43 [無断転載禁止](c)2ch.net
スレリンク(math板:116番)-
116 自分:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 投稿日:2019/11/25(月) 12:08:05.04 ID:NuOctDvT [3/5]
IUTの成否は、半々かな
全くゼロというわけでもなさそうな気がする
来年シンポジューム打つしね
174:132人目の素数さん
19/11/25 18:06:59 5k7RI9yy.net
おっちゃんです。
>>96
微分形式のことは書かれていない。まあ、一応解析の本なんで。
>>99
バナッハ空間における微分は、その存在性を示さなくても定義可能。
実数体R上のユークリッドノルムが入った有限次元のバナッハ空間 R^n で、偏微分や全微分が実質的に定義されている。
実数体R上のユークリッドノルムが入った有限次元のバナッハ空間 R^n での
一変数微積分や多変数微積分は、関数解析を使わずに理論展開出来る。
大体、絶対値の記号 |…| をユークリッドノルム ||…|| の記号で置き換えればいい。
175:132人目の素数さん
19/11/25 18:14:34 5k7RI9yy.net
>>99
>>152の>99宛ての1行目について訂正:
バナッハ空間における微分 → 実数体R上のバナッハ空間における微分
それじゃ、おっちゃんもう寝る。
176:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/25 18:20:25 NuOctDvT.net
IUT情報:下記
ふーん、イギリスへ行っているあの先生とF先生のところとの共著かも(^^
また、識別とラベルの問題とか、イチャモンつくかも知れないが、それでも良い
どんどん
177:、進めてほしい。外野で見ている方の希望としては (^^; Inter-universal geometry と ABC予想 42 https://rio2016.5ch.net/test/read.cgi/math/1572150086/423- 423 名前:132人目の素数さん[sage] 投稿日:2019/11/25(月) 14:16:33.03 ID:ub/eJojY あまりにもフェイクが多いのでここでも反論しておく。 応用がない進展がないというのはおまえ等が知らないだけだ。知ってる奴は次への進んでることをちゃんと理解してる。 一つevidenceを晒そう。 今進んでる研究では、テータ関数の正規化のために使ってた2等分→6等分にする事で、原論文で制約下だった2を割る素点除外条件を外すことに成功し、これにより有理数体と虚二次体における高さに対するeffectiveな不等式が導けてる。 これ、すごいことよ。わかるかな?情弱門外漢似非数学者に? これは近々共著論文で日の目を見ると思うが。
178:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/25 18:21:57 NuOctDvT.net
>>152-153
おっちゃん、どうも、スレ主です。
レスありがとう~!(^^
179:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/25 20:52:42.09 1A25DpO+.net
>>154 これか(^^
Inter-universal geometry と ABC予想 42
スレリンク(math板:431番)-
431 名前:132人目の素数さん[] 投稿日:2019/11/25(月) 16:10:00.16 ID:L5hBwAc/ [3/3]
午後8:33 · 2018年10月22日
今回の講演では、楕円曲線の6等分点を
用いることによって完全に明示的な
(=即ち非明示的な「定数」が一切現れない)不等式を得ることを目的とする最近の共同
研究を紹介する。
(京都大学数理解析研究所の星裕一郎氏、
望月新一氏、Nottingham大学の Ivan Fesenko氏、Wojciech Porowski氏との共同研究)
URLリンク(twitter.com)
math_jin
2018年10月22日
その他
今回の講演では、楕円曲線の6等分点を用いることによって完全に明示的な(=即ち非明示的な「定数」が一切現れない)不等式を得ることを目的とする最近の共同研究を紹介する。(京都大学数理解析研究所の星裕一郎氏、望月新一氏、Nottingham大学の Ivan Fesenko氏、Wojciech Porowski氏との共同研究)
URLリンク(www.math.titech.ac.jp)
東工大
URLリンク(www.math.titech.ac.jp)
東工大 数論・幾何学セミナー
11月2日(金) (二講演あります。)
16:15~17:15
南出 新 氏(京大数理研)
「宇宙際タイヒミューラー理論における明示的評価について(in progress)」
要旨: 今回の講演では、望月新一氏によって創始された、宇宙際タイヒミューラー 理論の最近の進展について報告する。 宇宙際タイヒミューラー理論とは、大雑把に述べると、「一点抜き楕円曲線 付き数体」の「数論的タイヒミューラー変形」を遠アーベル幾何等を用いて 「計算」する理論である。
特に、その応用として、あるディオファントス幾何的不等式が帰結される。 今回の講演では、楕円曲線の6等分点を用いることによって完全に明示的な (=即ち非明示的な「定数」が一切現れない)不等式を得ることを目的と する最近の共同研究を紹介する。
(京都大学数理解析研究所の星裕一郎氏、望月新一氏、Nottingham大学の Ivan Fesenko氏、Wojciech Porowski氏との共同研究)
URLリンク(www.math.titech.ac.jp)
つづく
(deleted an unsolicited ad)
180:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/25 20:53:07.53 1A25DpO+.net
>>156
つづき
URLリンク(www.kurims.kyoto-u.ac.jp)
望月新一の過去と現在の研究
南出新氏による、IUTeichにおける明示的な不等式に関する講演のスライドを掲載
URLリンク(www.kurims.kyoto-u.ac.jp)(in%20progress).pdf
Explicit estimates in inter-universal Teichm¨uller theory
(in progress)
(joint work w/ I. Fesenko, Y. Hoshi, S. Mochizuki, and
W. Porowski)
Arata Minamide
RIMS, Kyoto University
November 2, 2018
(引用終り)
以上
181:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/25 20:57:10.67 1A25DpO+.net
>>156
因みに、Ivan Fesenko 氏
(東工大はIUT派か)
URLリンク(www.math.titech.ac.jp)
東工大 数論・幾何学セミナー
10月24日(水) 16:00~17:00
東工大本館2階 234セミナー室
(いつもと曜日と場所が異なりますので御注意下さい!)
Ivan Fesenko 氏(University of Nottingham)
「Two 2d adelic structures on elliptic surfaces
182:and the BSD conjecture」 要旨: Two-dimensional local non-archimedean local fields arising from two-dimensional arithmetic geometry, e.g. formal power series over p-adic numbers, have two distinct integral structures: of rank 1 and of rank 2. Correspondingly, there are two distinct two-dimensional adelic structures on elliptic surfaces. Interestingly, they have a number of similarities with two symmetries of IUT. My talk will explain how an interaction between the two adelic structures on proper models of elliptic curves over global fields helps us to understand the meaning of the classical BSD conjecture and produce its equivalent reformulation in purely adelic terms. Part of this work is joint work with W. Czerniawska and P. Dolce. (google訳) 2次元算術幾何学から生じる2次元局所非アルキメデス局所場、例えば p進数上の正式なべき級数には、ランク1とランク2の2つの異なる積分構造があります。 これに対応して、楕円面には2つの異なる2次元のアデリック構造があります。 興味深いことに、IUTの2つの対称性と多くの類似点があります。 私の講演では、グローバルフィールド上の楕円曲線の適切なモデル上の2つのアデル構造間の相互作用が、古典的なBSD予想の意味を理解し、純粋なアデル用語で同等の再定式化を生成する方法を説明します。 この作業の一部は、W。チェルニアウスカおよびP.ドルチェとの共同作業です。
183:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/25 21:02:06.32 1A25DpO+.net
>>157 補足
この望月新一の過去と現在の研究
「南出新氏による、IUTeichにおける明示的な不等式に関する講演のスライド」
の由来がよく分からなかったのだが
なるほど、東工大 数論・幾何学セミナー 11月2日(金) だったか(^^
184:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/25 21:17:20 1A25DpO+.net
>>157
>URLリンク(www.kurims.kyoto-u.ac.jp)(in%20progress).pdf
>Explicit estimates in inter-universal Teichm¨uller theory
>(in progress)
当時(1年前)IUTスレで、南出新氏、定量評価出来たら良いなという夢を語っているだけ
みたいな評価だったが
いよいよ論文発表ですかね
>>158
>Ivan Fesenko 氏(University of Nottingham)
>「Two 2d adelic structures on elliptic surfaces and the BSD conjecture」
BSDからみか(^^;
URLリンク(ja.wikipedia.org)
(抜粋)
バーチ・スウィンナートン=ダイアー予想 (Birch and Swinnerton-Dyer conjecture) は数論の分野における未解決問題である。略してBSD予想 (BSD conjecture) と呼ばれる。それは最もチャレンジングな数学の問題の 1 つであると広く認められている。
予想はクレイ数学研究所によってリストされた 7 つのミレニアム懸賞問題の 1 つとして選ばれ、最初の正しい証明に対して100万ドルの懸賞金が約束されている[1]。
予想は機械計算の助けを借りて1960年代の前半に予想を立てた数学者ブライアン・バーチ (Bryan Birch) とピーター・スウィンナートン=ダイアー (Peter Swinnerton-Dyer) にちなんで名づけられている。2014年現在、予想の特別な場合のみ正しいと証明されている。
予想は代数体 K 上の楕円曲線 E に伴う数論的データを E の ハッセ・ヴェイユの L-関数 L(E, s) の s = 1 における振る舞いに関係づける。
より具体的には、E の点のなすアーベル群 E(K) のランクは L(E, s) の s = 1 における零点の位数であり、s = 1 における L(E, s) のテイラー展開における最初の 0 でない係数は K 上の E に付属している�
185:謔關ク密な数論的データによって与えられる、ということが予想されている (Wiles 2006)。
186:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/25 21:19:13 1A25DpO+.net
>>160
こんなの早く arxiv投稿して
来年のシンポジュームには
もっと進んだ話題を発表してほしいね(^^;
187:132人目の素数さん
19/11/25 21:24:08 LAzU75eF.net
ここ文系しか居ないね
188:やっぱり2が好き
19/11/25 21:25:42 LAzU75eF.net
どこよ~
どこ~
ペレリマンはどこなのよ~?
189:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/25 22:12:30.46 1A25DpO+.net
>>156
>Wojciech Porowski氏
2011年の国際数学オリンピックで、
Bronze medal (Poland)か
Polandからイギリス留学なんだ
URLリンク(www.imo-official.org)
International Mathematical Olympiad
Wojciech Porowski
Year Country P1 P2 P3 P4 P5 P6 Total Rank Abs Rel. Award
2011 Poland 4 0 1 7 7 1 20 171 69.75% Bronze medal
190:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/25 22:15:35.68 1A25DpO+.net
>>162-163
このスレには、アホバカしかいない
テンプレ>>12にあるとおり
もっとも、5ch数学板なんて
そんなもんだぜ
お前も
191:132人目の素数さん
19/11/25 22:32:30.04 /WCVXAbE.net
{}∈{{}}, {{}}∈{{{}}} だから {}∈{{{}}}
とか言っちゃうアホバカは数学板でもおまえくらいだよw
192:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/26 00:16:32 oYs7jyeH.net
>>160
Ivan Fesenko 氏、BSDを解決して、クレイ数学研究所 ミレニアム懸賞問題 100万ドルの懸賞金 ゲットできるかもなw(^^;
193:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/26 00:17:23 oYs7jyeH.net
>>166
自分の能力の証明がないw(^^;
194:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/26 00:26:15.90 oYs7jyeH.net
>>166
シングルトンの可算多重カッコ( {{{・・{{{ }}}・・・}}} ←{ }が多重になったもの)
が理解できない落ちこぼれさんたち多数居たなww(^^;
良い勝負だろ?(^^;
現代数学の系譜 カントル 超限集合論
スレリンク(math板:1番)-
195:132人目の素数さん
19/11/26 05:13:46.66 xwd+SCAL.net
おっちゃんです。
>>162
何度も繰り返していうが、私は数学科卒ではないだけで、理系。
文系の人には、関数解析をする人はいるかも知れないが、
(非線形)楕円型 PDE や変分法とかの非線形解析に近いことをする人は多分殆どいないだろう。
196:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/26 07:09:53.97 oYs7jyeH.net
>>169 タイポ訂正
シングルトンの可算多重カッコ( {{{・・{{{ }}}・・・}}} ←{ }が多重になったもの)
↓
シングルトンの可算多重カッコ( {{{・・・{{{ }}}・・・}}} ←{ }が多重になったもの)
197:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/26 07:24:32.71 oYs7jyeH.net
>>170
おっちゃん、どうも、スレ主です。
レスありがとう
今時の経済系は、
偏微分方程式、確率微分方程式、不動点定理くらいはやるらしいぜ(^^;
(参考)
URLリンク(ja.wikipedia.org)
角谷の不動点定理
(抜粋)
角谷の不動点定理は、ブラウワーの不動点定理の一般化である。ブラウワーの不動点定理は、ユークリッド空間のコンパクトな凸部分集合上で定義される連続函数の不動点の存在を示すものであった。角谷の定理はこれを集合値函数に拡張したものである。
この定理は角谷静夫によって1941年に証明され[1]、ジョン・ナッシュによりナッシュ均衡を表現するために用いられた[2]。その後、ゲーム理論や経済学における幅広い分野で応用されている[3]。
URLリンク(ja.wikipedia.org)
ブラック?ショールズ方程式
(抜粋)
ブラック?ショールズ方程式(ブラック?ショールズほうていしき、英: Black?Scholes equation)とは、デリバティブの価格づけに現れる偏微分方程式(およびその境界値問題)のことである。様々なデリバティブに応用できるが、特にオプションに対しての適用が著名である。
歴史的背景
ブラックとショールズは伊藤清らにより創始された確率微分方程式の理論とマートンとの議論によってもたらされた複製ポートフォリオの概念を用いて導出されたブラック?ショールズ方程式の解を見出すことに成功した。
1997年のノーベル経済学賞はショールズとマートンに授与された。ブラックは1995年に亡くなっていたために、この栄誉にあずかることはできなかった。
198:132人目の素数さん
19/11/26 08:15:10 xwd+SCAL.net
>>172
>今時の経済系は、
>偏微分方程式、確率微分方程式、不動点定理くらいはやるらしいぜ(^^;
今時の経済系の人がこれらをするとする。
確率微分方程式は熱伝導方程式に基づく放物型の方程式だから、今時の経済系の人は或る程度物理を知っていることになる。
それ故、今時の経済系の人が或る程度の物理を学習していることになる。
だが、今時の多くの経済系の人がそのようなことをしているとは到底思えない。
多くの経済系の人は応用で使っているのだろう。
199:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/26 08:26:16 oYs7jyeH.net
Inter-universal geometry と ABC予想 42
スレリンク(math板:438番)-
438 名前:132人目の素数さん[sage] 投稿日:2019/11/25(月) 17:51:09.67 ID:LBlGQQG+ [5/5]
>>437
ちがうわ。もともとメールでやりとりしてて、SS側の承諾がないと公開出来なかったんだよ。その点はむしろSS側を批判すべき。望月は公開の議論を希望してた。
(引用終り)
ここ
ショルツ先生は、2018年の夏にフィールズ賞受賞
多分5月くらいには、内定もらっていたんだろう
で、「おれ、フィールズ賞の予定だから、それまで忙しいんだ」(こうは言わなかったらしいが)と引き延ばし
で、9月になって、フィールズ賞受賞後は、ショルツ先生IUTに興味無くなったんじゃないかな
(IUTで時間使っても、ショルツ先生にとってはプラスがない)
URLリンク(ja.wikipedia.org)
ピーター・ショルツ(1987年12月11日 - 、独: Peter Scholze)は、数論幾何学を専門とするドイツ人数学者。ボン大学教授[2]。世界をけん引する数学者の一人と評されている[3][4][5]。2018年、30歳でフィールズ賞受賞した[6]。
(抜粋)
経歴
学生時代に国際数学オリンピックに参加し、3つの金メダルと1つの銀メダルを獲得した[7]。2012年に指導教官のマイケル・ラパポートの下でボン大学より博士号を授与された[1]。2011年7月から2016年まで、クレイ数学研究所の研究員であった[8]。
業績
ショルツの研究は、数論幾何学、例えばp進数とその応用に集中している。
ゲルト・ファルティングス、ジャン=マルク・フォンテーヌ、そして後にキラン・ケッドラヤによって開発された以前の基本的な理論のいくつかをよりコンパクトな形で提示した。
ウェイト・モノドロミー予想を部分的に証明した[9]。
2012年博士号を取得した直後に24才で当時のドイツ最年少教授となった[3][10][11][12]。
200:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/26 08:28:09 oYs7jyeH.net
>>173
>だが、今時の多くの経済系の人がそのようなことをしているとは到底思えない。
おっちゃん、どうも、スレ主です。
多くの経済系の人ではないよね、多分
でも、やっている人はいるだろうし
経済学部の講義にも入っていると思うよ
(どこまで数学的内容に深入りするのか知らないが(^^; )
201:132人目の素数さん
19/11/26 08:59:31 xwd+SCAL.net
>>175
>でも、やっている人はいるだろうし
>経済学部の講義にも入っていると思うよ
>(どこまで数学的内容に深入りするのか知らないが(^^; )
物理の講義が経済学部の専門の講義に入っている訳ない。
よくて、物理の講義は、経済学部の教養の段階で終わりになるだろう。
そもそも、リーマン・ショックの株価暴落が起きて、経済の理論によるその予想が 100'% 的中する訳ではない。
経済学部での金融の理論は余り当てにならん。
202:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/26 21:16:57.56 oYs7jyeH.net
>>176
おっちゃん、どうも、スレ主です。
レスありがとう
なんか、数学と物理が混線しているように思うが
203:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/26 23:06:50.39 oYs7jyeH.net
>>124
>楕円曲線のホッジ・アラケロフ理論は、アラケロフ理論(英語版)(Arakelov theory)のフレームワークで考える p-進ホッジ理論(英語版)(p-adic Hodge thory)の楕円曲線についての類似理論
"アラケロフ理論(英語版)(Arakelov theory)"下記ですな
下記では、Faltings、Serge Lang、Mordell conjecture、Deligne、arithmetic Hodge index などなど、重要キーワード満載ですな
(参考)
URLリンク(en.wikipedia.org)
Arakelov theory
(抜粋)
In mathematics, Arakelov theory (or Arakelov geometry) is an approach to Diophantine geometry, named for Suren Arakelov. It is used to study Diophantine equations in higher dimensions.
Contents
1 Background
2 Results
3 Arithmetic Chow groups
4 The arithmetic Riemann?Roch theorem
Results
Arakelov (1974, 1975) defined an intersection theory on the arithmetic surfaces attached to smooth projective curves over number fields, with the aim of proving certain results, known in the case of function fields, in the case of number fields.
Gerd Faltings (1984) extended Arakelov's work by establishing results such as a Riemann-Roch theorem, a Noether formula, a Hodge index theorem and the nonnegativity of the self-intersection of the dualizing sheaf in this context.
つづく
204:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/26 23:07:42.99 oYs7jyeH.net
>>178
つづき
Arakelov theory was used by Paul Vojta (1991) to give a new proof of the Mordell conjecture, and by Gerd Faltings (1991) in his proof of Serge Lang's generalization of the Mordell conjecture.
Pierre Deligne (1987) developed a more general framework to define the intersection pairing defined on an arithmetic surface over the spectrum of a ring of integers by Arakelov.
Arakelov's theory was generalized by Henri Gillet and Christophe Soule to higher dimensions. That is, Gillet and Soule defined an intersection pairing on an arithmetic variety.
One of the main results of Gillet and Soule is the arithmetic Riemann?Roch theorem of Gillet & Soule (1992), an extension of the Grothendieck?Riemann?Roch theorem to arithmetic varieties.
For this one defines arithmetic Chow groups CHp(X) of an arithmetic variety X, and defines Chern classes for Hermitian vector bundles over X taking values in the arithmetic Chow groups.
Arakelov's intersection theory for arithmetic surfaces was developed further by Jean-Benoit Bost (1999).
The theory of Bost is based on the use of Green functions which, up to logarithmic singularities, belong to the Sobolev space {\displaystyle L_{1}^{2}}{\displaystyle L_{1}^{2}}.
In this context Bost obtains an arithmetic Hodge index theorem and uses this to obtain Lefschetz theorems for arithmetic surfaces.
(引用終り)
205:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/26 23:09:11.14 oYs7jyeH.net
>>179
>Arakelov theory was used by Paul Vojta (1991) to give a new proof of the Mordell conjecture, and by Gerd Faltings (1991) in his proof of Serge Lang's generalization of the Mordell conjecture.
Paul Vojta さん(^^;
206:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/26 23:13:42.54 oYs7jyeH.net
>>124
>楕円曲線のホッジ・アラケロフ理論は、アラケロフ理論(英語版)(Arakelov theory)のフレームワークで考える p-進ホッジ理論(英語版)(p-adic Hodge thory)の楕円曲線についての類似理論である。
(参考)
URLリンク(en.wikipedia.org)
p-adic Hodge theory
(抜粋)
The theory has its beginnings in Jean-Pierre Serre and John Tate's study of Tate modules of abelian varieties and the notion of Hodge?Tate represen
207:tation. Hodge?Tate representations are related to certain decompositions of p-adic cohomology theories analogous to the Hodge decomposition, hence the name p-adic Hodge theory. Further developments were inspired by properties of p-adic Galois representations arising from the etale cohomology of varieties. Jean-Marc Fontaine introduced many of the basic concepts of the field.
208:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/27 07:49:43 qnEhNItW.net
>>181
つづき
Contents
1 General classification of p-adic representations
2 Period rings and comparison isomorphisms in arithmetic geometry
General classification of p-adic representations
Let K be a local field with residue field k of characteristic p. In this article, a p-adic representation of K (or of GK, the absolute Galois group of K) will be a continuous representation ρ : GK→ GL(V), where V is a finite-dimensional vector space over Qp.
The collection of all p-adic representations of K form an abelian category denoted \mathrm {Rep} _{\mathbf {Q} _{p}}(K)}{\mathrm {Rep}}_{{{\mathbf {Q}}_{p}}}(K) in this article.
p-adic Hodge theory provides subcollections of p-adic representations based on how nice they are, and also provides faithful functors to categories of linear algebraic objects that are easier to study. The basic classification is as follows:[2]
{Rep} _{\mathrm {cris} }(K)\subsetneq {Rep} _{st}(K)\subsetneq {Rep} _{dR}(K)\subsetneq {Rep} _{HT}(K)\subsetneq {Rep} _{\mathbf {Q} _{p}}(K)}
where each collection is a full subcategory properly contained in the next. In order, these are the categories of crystalline representations, semistable representations, de Rham representations, Hodge?Tate representations, and all p-adic representations.
In addition, two other categories of representations can be introduced, the potentially crystalline representations Reppcris(K) and the potentially semistable representations Reppst(K).
The latter strictly contains the former which in turn generally strictly contains Repcris(K); additionally, Reppst(K) generally strictly contains Repst(K), and is contained in RepdR(K) (with equality when the residue field of K is finite, a statement called the p-adic monodromy theorem).
つづく
209:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/27 07:50:27 qnEhNItW.net
>>182
つづき
Period rings and comparison isomorphisms in arithmetic geometry
The general strategy of p-adic Hodge theory, introduced by Fontaine, is to construct certain so-called period rings[3] such as BdR, Bst, Bcris, and BHT which have both an action by GK and some linear algebraic structure and to consider so-called Dieudonne modules
D_{B}(V)=(B\otimes _{\mathbf {Q} _{p}}V)^{G_{K}}}
(where B is a period ring, and V is a p-adic representation) which no longer have a GK-action, but are endowed with linear algebraic structures inherited from the ring B.
In particular, they are vector spaces over the fixed field E:=B^{G_{K}}}E:=B^{{G_{K}}}.[4] This construction fits into the formalism of B-admissible representations introduced by Fontaine.
For a period ring like the aforementioned ones B? (for ? = HT, dR, st, cris), the category of p-adic representations Rep?(K) mentioned above is the category of B?-admissible ones, i.e. those p-adic representations V for which
\dim _{E}D_{B_{\ast }}(V)=\dim _{\mathbf {Q} _{p}}V}
or, equivalently, the comparison morphism
\alpha _{V}:B_{\ast }\otimes _{E}D_{B_{\ast }}(V)\longrightarrow B_{\ast }\otimes _{\mathbf {Q} _{p}}V}
is an isomorphism.
This formalism (and the name period ring) grew out of a few results and conjectures regarding comparison isomorphisms in arithmetic and complex geometry:
If X is a proper smooth scheme over C, there is a classical comparison isomorphism between the algebraic de Rham cohomology of X over C and the
210:singular cohomology of X(C) (引用終り)
211:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/27 07:57:19 qnEhNItW.net
>>181 補足
p-adic Hodge theory
キーワードを拾うと
・The collection of all p-adic representations of K form an abelian category
・and also provides faithful functors to categories of linear algebraic objects that are easier to study.
・where each collection is a full subcategory properly contained in the next.
category、faithful functors、full subcategory properly
てのは、p-adic Hodge theory 由来なのかな?
212:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/28 07:59:47.92 QdpmOFrx.net
Inter-universal geometry と ABC予想 42
スレリンク(math板:449番)-
449 名前:132人目の素数さん[sage] 投稿日:2019/11/26(火) 06:18:49.75 ID:LyHP70fx [1/3]
(抜粋)
ただ、コア的記述による入れ子構造、
(引用終り)
”入れ子構造”は、下記の”お話”だと思うが
普通、”再帰”(下記)というのでは?
URLリンク(www.kurims.kyoto-u.ac.jp)
望月新一 過去と現在の研究
URLリンク(www.kurims.kyoto-u.ac.jp)
IUTeichって何?
「そっくりアニメ」
による解説
(抜粋)
「IUTeich」(=宇宙際 Teichm¨uller 理論)の出発点は、
入れ子になっている宇宙の列
というイメージにある。このようなイメージは、古代に遡るものと思われ、本稿で取
り上げる「そっくりハウス」のアニメをはじめ、世界各地の様々な物語・神話に登場
するものである。IUTeich の場合、それぞれの宇宙は、
「通常の環論・スキーム論が有効な古典的数論幾何的舞台一式」
に対応する。
URLリンク(ja.wikipedia.org)
再帰
(抜粋)
再帰(さいき)は、あるものについて記述する際に、記述しているものそれ自身への参照が、その記述中にあらわれることをいう。定義において、再帰があらわれているものを再帰的定義という。自己相似の記事も参照のこと。
主に英語のrecursionとその派生語の訳にあてられる。他にrecurrenceの訳(回帰#物理学及び再帰性を参照のこと)や、reflexiveの訳[1]として「再帰」が使われることがある。数学的帰納法との原理的な共通性から、recursionの訳として数学では「帰納」を使うことがある。
関連項目
数学
数学的帰納法
再帰理論
帰納的集合
帰納的可算集合
帰納言語
帰納的可算言語
帰納的関数
原始再帰関数
漸化式
高階関数
つづく
213:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/28 08:00:10.10 QdpmOFrx.net
>>185
つづき
URLリンク(dic.nicovideo.jp)
ニコニコ大百科
再帰単語
(抜粋)
再帰とは、 ある対象xの定義の中にxが登場するような物を言う。
→ 再帰
数学における再帰
以下のようなフィボナッチ数列の定義は再帰的な定義と言える。
a1 = a2 = 1
an+2 = an+1 + an
再帰的でない定義(一般解)は以下のような形になる。
an = 1/√5 × [ {(1+√5)/2}n - {(1-√5)/2}n ]
この例から分かるように、再帰的定義を用いると、そうでない定義よりも直感的な定義をすることが可能になる場合がある。
再帰的解法
再帰的な手法を使い、問題を解く手順である。有名なものにハノイの塔がある。
つづく
214:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/28 08:01:03.09 QdpmOFrx.net
>>186
つづき
なお、関連
URLリンク(www.kurims.kyoto-u.ac.jp)
過去と現在の研究の報告 (2008-03-25 現在) (フォント埋め込み版)
(引用終り)
以上
215:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/28 14:41:24 rRA3+Jnq.net
>>187
内容引用&補足:これを見ると、IUTの意図がなんとなく程度分かるね
URLリンク(www.kurims.kyoto-u.ac.jp)
過去と現在の研究の報告 (2008-03-25 現在)
初期の歩み
学位を取得した 1992 年夏から 2000 年夏までの私の研究の主なテーマは次の三つ
に分類することができます:
(a) p 進 Teichm¨uller 理論:(1993 年~1996 年)
この理論は、複素数体上の双曲的リーマン面に対する Koebe の上半平面に
よる一意化や、そのモジュライに対する Bers の一意化の p 進的な類似と見る
こともでき、また Serre-Tate の通常アーベル多様体に対する標準座標の理論の
双曲曲線版と見ることもできる。詳しくは、
A Theory of Ordinary p-adic Curves
や
An Introduction to p-adic Teichm¨uller Theory をご参照下さい。
(b) p 進遠アーベル幾何:(1995 年~1996 年)
この理論の代表的な定理は、「劣 p 進体」(= p 進局所体上有限生成な体の部
分体)上の相対的な設定において、双曲的曲線への任意の多様体からの非定数
的な射と、それぞれの数論的基本群の間の開外準同型の間に自然な全単射が存
在するというものである。詳しくは、
The Local Pro-p Anabelian Geometry of Curves
をご参照下さい。
(c) 楕円曲線の Hodge-Arakelov 理論:(1998 年~2000 年)
この理論の目標は、複素数体や p 進体上で知られている Hodge 理論の類似
を、数体上の楕円曲線に対して Arakelov 理論的な設定で実現することにある。
代表的な定理は、数体上の楕円曲線の普遍拡大上のある種の関数空間と、楕円
曲線の等分点上の関数からなる空間の間の、数体のすべての素点において計量
と(ある誤差を除いて)両立的な全単射を主張するものである。この理論は、
古典的なガウス積分
∫ ∞ ?∞ e?x2 dx = √π
の「離散的スキーム論版」と見ることもできる。詳しくは、
A Survey of the Hodge-Arakelov Theory of Elliptic Curves I, II
をご参照下さい。
つづく
216:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/28 14:41:52 rRA3+Jnq.net
>>188
つづき
新たな枠組への道
Hodge-Arakelov 理論では、数論的な Kodaira-Spencer 射が構成されるなど、
ABC 予想との関連性を仄めかすような魅力的な側面があるが、そのまま「ABC 予
想の証明」に応用するには、根本的な障害があり不十分である。このような障害を克
服するためには、
通常の数論幾何のスキーム論的な枠組を超越した枠組
が必要であろうとの直感の下、2000 年夏から 2006 年夏に掛けて、そのような枠組を
構築するためには何が必要か模索し始め、またその枠組の土台となる様々な数学的イ
ンフラの整備に着手した。このような研究活動を支えた基本理念は、次のようなも
のである:
注目すべき対象は、特定の数論幾何的設定に登場する個々のスキーム等ではな
く、それらのスキームを統制する抽象的な組合せ論的パターンないしはそのパ
ターンを記述した組合せ論的アルゴリズムである。
このような考え方を基にした幾何のことを、「宇宙際(Inter-universal=IU)幾
何」と呼ぶことにした。念頭においていた現象の最も基本的な例として次の三つが
挙げられる:
・ログ・スキームの幾何におけるモノイド
・遠アーベル幾何における数論的基本群=ガロア圏
・退化な安定曲線の双対グラフ等、抽象的なグラフの構造
この三つの例に出てくる「モノイド」、「ガロア圏」、「グラフ」は、いずれも、「圏」
という概念の特別な場合に当たるものと見ることができる。(例えば、グラフの場合、
グラフ上のパスを考えることによって圏ができる。)従って、IU 幾何の(すべてでは
ないが)重要な側面の一つは、
「圏の幾何」
で表されるということになる。特に、遠アーベル幾何の場合、この「圏の幾何」に対応するのは、
絶対遠アーベル幾何
(=基礎体の絶対ガロア群を、元々与えられたものとして見做さない設定での遠アーベル幾何)
217:である。 つづく
218:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/28 14:42:12 rRA3+Jnq.net
>>189
つづき
この 6 年間(= 2000 年夏~2006 年夏)の、
「圏の幾何」や絶対遠アーベル幾何
を主テーマとした研究の代表的な例として、次のようなものが挙げられる:
・The geometry of anabelioids (2001 年)
スリム(=任意の開部分群の中心が自明)な副有限群を幾何的な対象として扱い、
その有限次エタール被覆の圏の性質を調べる。特に、p 進体上の双曲曲線の数論的基
本群として生じる副有限群の場合、この圏は、上半平面の幾何を連想させるような
絶対的かつ標準的な「有界性」等、様々な興味深い性質を満たす。
・The absolute anabelian geometry of canonical curves (2001 年)
p 進 Teichm¨uller 理論に登場する標準曲線に対して、p 進体上のものとして初とな
る絶対遠アーベル幾何型の定理を示す。
・Categorical representation of locally noetherian log schemes (2002 年)
スキームやログ・スキームが、その上の有限型の(ログ)スキームの圏から自然
に復元されるという、1960 年代に発見されてもおかしくない基本的な結果を示す。
・Semi-graphs of anabelioids (2004 年)
古典的な「graph of groups」の延長線上にある「semi-graph of anabelioids」に対
して、様々なスキーム論的な「パターン」が忠実に反映されることや、それに関連し
た「遠アーベル幾何風」の結果を証明する。
・A combinatorial version of the Grothendieck conjecture (2004 年)
退化な安定曲線に付随する「semi-graph of anabelioids」を、スキーム論が明示的
に登場しない、抽象的な組合せ論的枠組で取り上げ、様々な「遠アーベル幾何風」の
「復元定理」を示す。
・Conformal and quasiconformal categorical representation of hyperbolic
Riemann surfaces (2004 年)
双曲的リーマン面の幾何を二通りのアプローチで圏論的に記述する。そのうちの
一つは、上半平面による一意化を出発点としたもので、もう一つは、リーマン面上の
「長方形」(=等角構造に対応)や「平行四辺形」(=疑等角構造に対応)によるもの
である。
つづく
219:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/28 14:42:31 rRA3+Jnq.net
>>190
つづき
・Absolute anabelian cuspidalizations of proper hyperbolic curves (2005年)
固有な双曲曲線の数論的基本群から、その開部分スキームの数論的基本群を復元
する理論を展開する。この理論を、有限体や p 進体上の絶対遠アーベル幾何に応用
することによって、様々な未解決予想を解く。
・The geometry of Frobenioids I, II (2005 年)
ガロア圏のような「´etale 系」圏構造と、(ログ・スキームの理論に出てくる)モ
ノイドのような「Frobenius 系」圏論的構造が、どのように作用しあい、またどの
ように類別できるかを研究する。
数体に対する Teichm¨uller 理論
2006 年の後半から、目指すべき理論の形がようやく固まってきて、その理論を記
述するための執筆活動が本格的に始まった。この理論の「形」とは、一言で言うと、
巾零通常固有束付きの正標数の双曲曲線に対して展開する p 進 Teichm¨uller 理
論と、「パターン的に」類似的な理論を、一点抜き楕円曲線付きの数体に対し
て展開する
という内容のものである。因みに、ここに出てくる(数体上の)「一点抜き楕円曲線」
の中に、その楕円曲線の上に展開される Hodge-Arakelov 理論が含まれている。こ
の理論のことを、「IU Teichm¨uller 理論」(=「IU Teich」)と呼ぶことにした。
IUTeich の方は、本質的にスキーム論の枠組の外(=「IU 的な枠組」)で定式化される
理論であるにも関わらず、調べれば調べるほど p 進 Teichm¨uller 理論(=「pTeich」)
との構造的、「パターン的」類似性が、意外と細かいところまで及ぶものであること
に幾度となく感動を覚えたものである。
つづく
220:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/28 14:43:37 rRA3+Jnq.net
>>191
つづき
2006 年~2008 年春の「IUTeich の準備」関連の論文は次の四篇である:
・The ´etale theta function and its Frobenioid-theoretic manifestations
(2006 年)
p 進局所体上の退化する楕円曲線(= Tate curve)のある被覆の上に存在するテー
タ関数に付随する Kummer 類をエタール・テータ関数と呼ぶ。このエタール・テー
タ関数や、テータ自明化に付随する Kummer 理論的な対象は、様々な興味深い絶対
遠アーベル的な性質や剛性性質を満たしている。これらの性質の一部は Frobenioid
の理論との関連で初めて意義を持つものになる。また、このエタール・テータ関数
は、IUTeich では、pTeich における標準的 Frobenius 持ち上げに対応する対象を定
める予定である。この Frobenius 持ち上げの類似物を微分することによって ABC 予
想の不等式が従うと期待している。このようにして不等式を出す議論は、
「正標数の完全体の Witt 環上の固有で滑らかな種数 g 曲線の上に Frobenius 持
ち上げが定義されていると仮定すると、その持ち上げを微分して微分層の次数
を計算することにより、
不等式
g ? 1
が従う」
という古典的な議論の IU 版とも言える。
・Topics in absolute anabelian geometry I: generalities (2008 年)
このシリーズ(= I,II,III)の主テーマは、絶対遠アーベル幾何を、「Grothendieck
予想型の充満忠実性」を目標とした視点ではなく、「群論的なアルゴリズム=ソフト」
の開発に軸足を置いた視点で研究するというものである。この第一論文では、様々な
準備的な考察を行う。代表的な定理では、玉川安騎男氏に伝え聞いた未出版の結果か
ら、(半)絶対 p 進遠アーベル幾何では初となる Grothendieck 予想型の「Hom 版」
を導く。因みに、この定理は IUTeich とは直接関係のない結果である。
つづく
221:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/28 14:44:10 rRA3+Jnq.net
>>192
つづき
・Topics in absolute anabelian geometry II: decomposition groups
(2008 年)
IUTeich のための準備的な考察とともに、IUTeich とは論理的に直接関係のない
配置空間の絶対遠アーベル幾何や、点の分解群から基礎体の加法構造を絶対 p 進遠
アーベル幾何的な設定で復元する理論を展開する。ただ、後者の p 進的な理論では、
上述の「Frobenius 持ち上げの微分から不等式を出す」議論を用いており、哲学的
には IUTeich と関係する側面がある。
・Topics in absolute anabelian geometry III: global reconstruction
algorithms (2008 年)
「Grothendieck 予想型の充満忠実性」を目標とする「双遠アーベル幾何」(= bianabelian geometry)と一線を画した「単遠アーベル幾何」(= mono-anabelian geometry)を数体上の大域的な設定で展開する。これは正に
IUTeich で用いる予定の遠アーベル幾何
である。この理論の内容や「IUTeich 構想」との関連性については、論文の Introduction をご参照下さい。
ここで興味深い事実を思い出しておきたい。そもそも Grothendieck が有名な
「Faltings への手紙」等で「遠アーベル哲学」を提唱した重要な動機の一つは正に diophantus幾何への応用の可能性にあったらしい。
つまり、遠アーベル幾何が(ABC 予想
への応用が期待される)IUTeich で中心的な役割を果たすことは、一見して Grothendieck の直感にそぐった展開に見受けられる。一方、もう少し「解像度を上げて」状
況を検証すると、それほど単純な関係にあるわけではないことが分かる。例えば、
Grothendieck が想定していた応用の仕方では、数体上の「セクション予想」によっ
て数体上の有理点の列の極限を扱うことが可能になるという観察が議論の要となる。
これとは対照的に、「IUTeich 構想」では、(数体上のセクション予想ではなく)
数体と p 進体の両方に対して両立的に成立する(絶対遠アーベル幾何の一種で
ある)単遠アーベル的アルゴリズムが主役を演じる予定である。
つづく
222:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/28 14:44:33 rRA3+Jnq.net
>>193
つづき
この「単遠アーベル的アルゴリズム」は、pTeich における MF∇-object
の Frobenius 不変量に対応するものであり、即ち p 進の理論における
Witt 環の Teichm¨uller 代表元や pTeich の標準曲線
の「IU 的類似物」と見ることができる。別の言い方をすれば、この「単遠アーベル的
アルゴリズム」は、一種の標準的持ち上げ・分裂を定義しているものである。また、(単
遠アーベル的な)「ガロア系」の対象が p 進の理論における crystal(= MF∇-object
の下部 crystal)に対応しているという状況には、Hodge-Arakelov 理論における「数
論的 Kodaira-Spencer 射」(=ガロア群の作用による)を連想させるものがある。
2008 年 4 月から
223: IUTeich 理論の「本体」の執筆に取り掛かる予定である。この作 業は、ごく大雑把に言うと、次の三つの理論を貼り合わせることを主体としたもの である: ・The geometry of Frobenioids I, II ・The ´etale theta function and its Frobenioid-theoretic manifestations ・Topics in absolute anabelian geometry III 因みに、2000 年夏まで研究していたスキーム論的な Hodge-Arakelov 理論がガウス 積分 ∫ ∞ ?∞ e?x2dx = √π の「離散的スキーム論版」だとすると、IUTeich は、 このガウス積分の「大域的ガロア理論版ないしは IU 版」 と見ることができ、また古典的なガウス積分の計算に出てくる「直交座標」と「極座 標」の間の座標変換は、(IU 版では)ちょうど「The geometry of Frobenioids I, II」 で研究した「Frobenius 系構造」と「´etale 系構造」の間の「比較理論」に対応して いると見ることができる。この「本体」の理論は、現在のところ二篇の論文に分けて 書く予定である。 つづく
224:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/28 14:44:59 rRA3+Jnq.net
>>194
つづき
・Inter-universal Teichm¨uller theory I: Hodge-Arakelov-theoretic aspects
(2009 年に完成(?)予定)
p 進 Teichm¨uller 理論における曲線や Frobenius の、「mod pn」までの標準持ち上
げに対応する IU 版を構成する。
・Inter-universal Teichm¨uller theory II: limits and bounds (2010 年に完
成(?)予定)
上記の「mod pn」までの変形の n を動かし、p 進的極限に対応する「IU 的な極
限」 を構成し、pTeich における Frobenius 持ち上げの微分に対応するものを計算
する。
(引用終り)
以上
225:132人目の素数さん
19/11/28 22:40:49.02 lvt0VL8R.net
4050
しろ@hu_corocoro 11月27日
苦節6ヶ月、初満点&一等賞です!
URLリンク(twitter.com)
(deleted an unsolicited ad)
226:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/28 23:10:56 QdpmOFrx.net
>>196
おめでとうございます
凄いですね(^^
227:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/28 23:48:43.22 QdpmOFrx.net
メモ貼る
URLリンク(www.youtube.com)
Peter Scholze - The geometric Satake equivalence in mixed characteristic
7,685 回視聴?2017/04/13
Institut des Hautes Etudes Scientifiques (IHES)
チャンネル登録者数 2.91万人
Seminaire Paris Pekin Tokyo / MArdi 11 avril 2017
In order to apply V. Lafforgue's ideas to the study of representations of p-adic groups, one needs a version of the geometric Satake equivalence in that setting.
For the affine Grassmannian defined using the Witt vectors, this has been proven by Zhu.
However, one actually needs a version for the affine Grassmannian defined using Fontaine's ring B_dR, and related results on the Beilinson-Drinfeld Grassmannian over a self-product of Spa Q_p.
These objects exist as diamonds, and in particular one can make sense of the fusion product in this situation; this is a priori surprising, as it entails colliding two distinct points of Spec Z.
The focus of the talk will be on the geometry of the fusion product, and an analogue of the technically crucial ULA (Universally Locally Acyclic) condition that works in this non-algebraic setting.
228:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/28 23:52:37.94 QdpmOFrx.net
>>198
>Satake equivalence
Satakeは、下記だろうね
URLリンク(ja.wikipedia.org)
佐武一郎
(抜粋)
佐武 一郎(さたけ いちろう、1927年 - 2014年10月10日)は、日本の数学者。山口県出身。
カリフォルニア大学バークレー校名誉教授。東北大学名誉教授。理学博士。
専門は微分幾何学、代数群。佐武同型(英語版)(Satake isomorphism)、志村多様体の佐武コンパクト化、ディンキン図形の一般化である佐武図形(英語版)(Satake diagram)などで知られる。
著書の『線型代数学』は線型代数学の入門書として有名であり[1]、現在でも広く読まれている。
略歴
1927年 - 山口県に生まれる
1950年 - 東京大学理学部数学科卒業
1959年 - 東京大学 理学博士 論文の題は「The Gauss-Bonnet theorem for 5-manifolds (5多様体についてのガウス-ボネットの定理) 」[2]。
1962~63年 - 東京大学教授
1963~68年 - シカゴ大学教授
1968~83年 - カリフォルニア大学バークレー校教授
1980~91年 - 東北大学教授
1991~98年 - 中央大学理工学部数学科教授
229:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/28 23:58:19.75 QdpmOFrx.net
>>198
>Satake equivalence
下記かな~?(^^;
”The geometric Satake equivalence is a geometric version of the Satake isomorphism, proved by Ivan Mirkovi? and Kari Vilonen (2007).”
”which is a fortiori an equivalence of tannakian categories (Ginzburg 2000).”
URLリンク(en.wikipedia.org)
Satake isomorphism
(抜粋)
Jump to navigationJump to search
In mathematics, the Satake isomorphism, introduced by Ichir? Satake (1963), identifies the Hecke algebra of a reductive group over a local field with a ring of invariants of the Weyl group.
The geometric Satake equivalence is a geometric version of the Satake isomorphism, proved by Ivan Mirkovi? and Kari Vilonen (2007).
Statement
Classical Satake isomorphism Let {\displaystyle G}G be a semisimple algebraic group, {\displaystyle K}K be a non-Archimedean local field and {\displaystyle O}O be its ring of integers. It's easy to see that {\displaystyle Gr=G(K)/G(O)}{\displaystyle Gr=G(K)/G(O)} is grassmannian.
Then, the geometric Satake isomorphism is
{\displaystyle K(Perv(Gr))\otimes _{\mathbb {Z} }\mathbb {C} \quad {\xrightarrow {\sim }}\quad K(Rep({}^{L}G))\otimes _{\mathbb {Z} }\mathbb {C} }{\displaystyle K(Perv(Gr))\otimes _{\mathbb {Z} }\mathbb {C} \quad {\xrightarrow {\sim }}\quad K(Rep({}^{L}G))\otimes _{\mathbb {Z} }\mathbb {C} },
which can be obviously simplified to
{\displaystyle Perv(Gr)\quad {\xrightarrow {\sim }}\quad Rep({}^{L}G)}{\displaystyle Perv(Gr)\quad {\xrightarrow {\sim }}\quad Rep({}^{L}G)},
which is a fortiori an equivalence of tannakian categories (Ginzburg 2000).
230:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/29 00:19:47 KnsCfpdu.net
>>200
>which is a fortiori an equivalence of tannakian categories (Ginzburg 2000).
淡中先生(^^
URLリンク(en.wikipedia.org)
Tannakian formalism
In mathematics, a Tannakian category is a particular kind of monoidal category C, equipped with some extra structure relative to a given field K.
The role of such categories C is to approximate, in some sense, the category of linear representations of an algebraic group G defined over K.
A number of major applications of the theory have been made, or might be made in pursuit of some of the central conjectures of contemporary algebraic geometry and number theory.
The name is taken from Tannaka?Krein duality, a theory about compact groups G and their representation theory.
The theory was developed first in the school of Alexander Grothendieck. It was later reconsidered by Pierre Deligne, and some simplifications made.
The pattern of the theory is that of Grothendieck's Galois theory, which is a theory about finite permutation representations of groups G which are profinite groups.
Contents
1 Formal definition
2 Applications
3 Extensions
つづく
231:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/29 00:20:19 KnsCfpdu.net
>>201
つづき
Applications
The Geometric Satake equivalence establishes an equivalence between representations of the Langlands dual group {}^{L}G} of a reductive group G and certain equivariant perverse sheaves on the affine Grassmannian associated to G.
This equivalence provides a non-combinatorial construction of the Langlands dual group. It is proved by showing that the mentioned category of perverse sheaves is a Tannakian category and identifying its Tannaka dual group with {}^{L}G}.
Extensions
Wedhorn (2004) has established partial Tannaka duality results in the situation where the category is R-linear, where R is no longer a field (as in classical Tannakian duality),
but certain valuation rings. Duong & Hai (2017) showed a Tannaka duality result if R is a Dedekind ring.
Iwanari (2014) has initiated the study of Tannaka duality in the context of infinity-categories.
232:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/29 00:29:29.74 KnsCfpdu.net
>>202
>Iwanari (2014) has initiated the study of Tannaka duality in the context of infinity-categories.
岩成 勇 先生、東北大だけど、
”2009年度: 京大, 数理解析研究所, 研究員”とあるから、京大出身かも
References
URLリンク(arxiv.org)
Iwanari, Isamu (2014), Tannaka duality and stable infinity-categories, arXiv:1409.3321, doi:10.1112/topo.12057
Comments: The final version. Published in Journal of Topology, Wiley 2018
URLリンク(nrid.nii.ac.jp)
岩成 勇 Iwanari Isamu
所属 (過去の研究課題情報に基づく) *注記 2018年度 ? 2019年度: 東北大学, 理学研究科, 准教授
2017年度: 東北大学, 理学(系)研究科(研究院), 准教授
2016年度: 東北大学, 理学研究科, 准教授
2012年度 ? 2015年度: 東北大学, 理学(系)研究科(研究院), 准教授
2012年度: 東北大学, 大学院・理学研究科, 准教授
2011年度: 東北大学, 大学院・理学研究科, 助教
2009年度: 京大, 数理解析研究所, 研究員
URLリンク(sites.google.com)
Isamu Iwanari's Home Page
233:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/29 00:33:22.40 KnsCfpdu.net
>>201
URLリンク(ja.wikipedia.org)
淡中忠郎
(抜粋)
淡中 忠郎 (たんなか ただお、1908年12月27日 - 1986年10月25日 )は日本の数学者。専門は代数学。
愛媛県生まれ。1945年東北帝国大学教授、後に東北学院大学教授を務めた。ポントリャーギン双対性をコンパクト群へ拡張した淡中-クラインの双対定理で著名。
この定理はグロタンディークによる淡中圏の概念へと発展した。
東京出版の月刊誌『大学への数学』で、「数学雑談」という連載記事の執筆を1960年(昭和35年)から[1]晩年まで担当していた。
URLリンク(kotobank.jp)
淡中 忠郎(読み)タンナカ タダオ コトバンク
(抜粋)
生年明治41(1908)年12月27日
没年昭和61(1986)年10月25日
出生地愛媛県松山市
学歴〔年〕東北帝国大学理学部数学科〔昭和7年〕卒
学位〔年〕理学博士(東北帝国大学)〔昭和16年〕
主な受賞名〔年〕勲三等旭日中綬章〔昭和55年〕
経歴昭和7年第二高等学校講師、9年東北帝国大学講師、17年同助教授、20年同教授、30年米国プリンストン高級研究所員、47年東北学院大学教授、55年CAP予備校校長を歴任。著書に「双対定理」「位相群論」。
出典 日外アソシエーツ「20世紀日本人名事典」(2004年刊)20世紀日本人名事典について
234:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/29 10:16:03.10 CoYajOLi.net
メモ
URLリンク(www.gizmodo.jp)
GIZMOD
韓国の囲碁世界チャンピオンが「AIは倒せない存在だ」と引退
2019.11.28 16:00
author Jennings Brown - Gizmodo US[原文]( 岡本玄介 )
(抜粋)
URLリンク(assets.media-platform.com)
白黒
235:ハッキリさせたいタイプ。 囲碁の世界的な人間のチャンピオンのひとりが、もはやAIとは競争できないという理由で、プロ棋士の立場から引退することを決めました。 韓国人の囲碁棋士イ・セドル氏は、2016年3月にGoogle Deepmindの人工知能AlphaGoと対決し、世界的に有名になった人物です。AlphaGoはセドル氏との5試合のうち4試合を勝利し、AIがもっとも複雑で抽象的な戦略ゲームのひとつで人間を負かせるほど進化していることを、世界的な舞台で証明したのでした。 対局当時から漂う悲壮感 セドル氏は負けた後も挫折感を隠しませんでした。彼は第3局後にこう言いました。
236:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/29 10:21:24.04 CoYajOLi.net
>>205
数学では部分的に、同じように、ヒトを機械が上回ることが起きて来ていた
・πの計算
・表計算(含む関数計算、例エクセル)
・有限群の計算
・数式処理ソフト
など
これからは、AIが入ってくるだろう
しかし、囲碁などと違うのは、数学は不完全性定理により、ルール(=公理や定義)が変わるから
人間の役割は、無くならないのではないでしょうか?(^^;
237:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/29 11:28:33 CoYajOLi.net
>>160 関連
IUTうまく行ってほしいですね(^^;
URLリンク(twitter.com)
math_jinさんがリツイート
Fumiharu Kato 加藤文元
@FumiharuKato
11月25日
その他
拙著『宇宙と宇宙をつなぐ数学』(KADOKAWA)
ですが品切れアマゾンなどで状態が続いてすいません。
第6刷(4,000部)の増版が決まりました!
累計23,000部です!!
12月8日に出荷予定です。
今後もよろしくお願い致します。
#宇宙と宇宙をつなぐ数学 #八重洲本大賞
(deleted an unsolicited ad)
238:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/29 13:46:48 CoYajOLi.net
メモ
URLリンク(www.nikkei.com)
国産データベース開発、技術革新で巡ってきた勝機
2019/11/28 2:00日本経済新聞 電子版
新エネルギー・産業技術総合開発機構(NEDO)が5年と25億円を投じて、国産の新しいリレーショナルデータベース(RDB)を開発している。日経 xTECHの取材でその詳細が明らかになった。
RDBの世界で近年、DBエンジンの作り直しが必須となる目覚ましい技術進化が起こっていることから、新規参入にも勝算があると判断した。
NEDOのRDB開発プロジェクトは「実社会の事象をリアルタイム処理可能な次世代データ処理基盤技術の研究開発」で、2018年度からの5年間に25億円の国費を投じる。開発はNEC、ノーチラス・テクノロジーズ(東京・品川)、東京工業大学、大阪大学、名古屋大学、慶応義塾大学などに委託する。
■厳格なトランザクションと高速な分析を両立
新RDBの特徴は厳格なオンライントランザクション処理(OLTP)が可能でありながら、ビッグデータ分析にも使用できる高いオンライン分析処理(OLAP)性能を有
239:していることだ。 OLTPとOLAPの両立はハイブリッドトランザクション/分析処理(HTAP)と呼ぶ。OLTPで用いる行方向のデータは不揮発性メモリーを採用する主記憶(メインメモリー)に格納し、OLAP用の列方向のデータを2次記憶装置に格納する。2次記憶装置にも不揮発性メモリーを使用する。 OLTPに関しては、トランザクション処理の分野で一般的なベンチマークである「TPC-C」において1ノードで1000万トランザクション/秒(TPS)の達成を当面の目標とする。 そしてトランザクション処理においては、一貫性と隔離性のレベルを示す「トランザクション分離レベル」が最も高い「SERIALIZABLE(シリアライザブル=直列化可能)」を保証する。 2次記憶装置にデータを格納する前にデータを処理するストリーミング処理にも、RDBそのもので対応する。従来はストリーミング処理のために、RDBとは別に処理機構を用意する必要があった。 つづく
240:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/29 13:47:23 CoYajOLi.net
>>208
つづき
OLAP高速化のために探索的データ分析を高速に実行するフレームワークも開発する。OLAPのクエリー(問い合わせ)を実行する前に機械学習ベースのアルゴリズムによってその内容を分析し、クエリーにとって最適なスキーマ(構造)を設定する。クエリー実行計画に加えてデータ構造も最適化することで、探索的データ分析を高速化する。
■PostgreSQL互換、OSSとして公開
新しいRDBはOLTPエンジンとOLAPエンジンの両方を搭載する。両エンジンに対応するクエリーのコンパイラーも開発する。完全に新規開発のRDBではあるが、SQLクエリーなどアプリケーション開発者にとってのインターフェースはオープンソースソフトウエア(OSS)のRDBであるPostgreSQL(ポストグレスキューエル)互換とすることで、使い勝手を良くする。
新RDB自体もOSSとして公開する計画だ。
RDB市場は現在、米オラクルや米マイクロソフトといった海外の巨大IT(情報技術)企業の独壇場だ。そうした中で国産RDBに勝機はあるのか。
開発リーダー役を務めるノーチラスの神林飛志会長は「DBの分野で近年、パラダイムシフトと言うべき目覚ましい技術進化が起こっている。この動きに対応するためには、既存DB製品もアーキテクチャーを根本から作り替える必要がある」と語る。全ての製品が作り直しになるのだから、新規開発の製品にもチャンスがある。それが国産RDBを新規開発する理由だという。
RDBの世界で近年、最も目覚ましい技術進化が起こっているのはトランザクション処理だ。現在の主要RDB製品で採用されている「2相ロック(2PL)」や「マルチバージョン同時実行制御(MVCC)」といったトランザクション処理方式は、1980年代末までに開発されたもの。それから四半世紀、トランザクション処理方式に大きな進化はなかった。
しかし13年に「SILO」という新しい方式が提案されてから「トランザクション処理方式の常識が大きく変わり始めた」(慶応義塾大学環境情報学部の川島英之准教授)。このSILOは、今回の新しい国産RDBにも影響を与えている。
つづく
241:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/29 13:47:51 CoYajOLi.net
>>209
つづき
■楽観的制御と高い分離レベルを両立
SILOの特徴は「SERIALIZABLE」の分離レベルを保証しながら、処理性能も高い点だ。現在の主要RDB製品もSERIALIZABLEを使用できるが、処理性能が大きく落ちてしまうため、デフォルト設定においてトランザクション分離レベルは2段階低い「READ COMMITTED(リード・コミッテッド=コミットされた読み取り)」になっている。SILOのような高い分離レベルと高い処理性能の両立は画期的だった。
SILOはロックを基本的に用いない「楽観的並行実行制御(OCC)」と、複数のトランザクションをまとめてログに記録する「グループコミット」を採用している。基本はロックフリーでトランザクションを並列処理して性能を高めつつ、わずかな時間だけロックを使うことでデータの一貫性を確保するテクニックを用いている。
具体的には、SILOはトランザクション処理を「Read(読み取り)」「Validation(検証)」「Write(書き込み)」の3段階で実行し、Validationの際に当該トランザクションがアクセスするデータアイテムに対してだけロックをかけ、Writeが終わったらロックを解除する。Validationとは他のトランザクションとの競合がなかったか検証するフェーズだ。
Validationによってトランザクション処理の一貫性を保証する。現在の主要RDB製品が採用する悲観的並列実行制御はデータアクセス前からデータアクセス終了までロックする。それに比べてSILOはロック時間が短い。
SILOはグループコミットを採用し、多数のトランザクションのログレコードをストレージに対して並列的に書き込む。近年の不揮発性メモリーが備える高速な書き込み性能を十分に活用できる。
13年に米マサチューセッツ工科大学(MIT)の研究チームがSILOを提案して以降、SERIALIZABLEを保証する高速なトランザクション処理方式が次々と考案されている。
つづく
242:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/29 13:48:17 CoYajOLi.net
>>210
つづき
■トランザクション処理方式でも国産目指す
NEDOの新RDBは、まずSILOを採用したDBエンジンを開発する予定だ。その後さらにSILOよりも性能が高いトランザクション処理方式を独自に開発して実装する計画になっている。
ノーチラスの神林会長は「新しいトランザクション処理方式の考案はほぼ済んだ。20年には新方式を実装したプロトタイプを作って性能を示す」と語る。新RDBの完成は22年度の予定だが、早ければ2020年にもその実力の一端が示されることになりそうだ。
(日経 xTECH/日経コンピュータ 中田敦)
[日経 xTECH 2019年10月23日付の記事を再構成]
(引用終り)
以上
243:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/29 13:53:37 CoYajOLi.net
>>206
4色問題とかケプラー予想もあったかな(^^;
URLリンク(ja.wikipedia.org)
(抜粋)
ケプラー予想(ケプラーよそう、英: Kepler conjecture )とは、17世紀の数学者・天文学者ヨハネス・ケプラーに由来する、三次元ユークリッド空間における球充填に関する数学的な予想である。
それによると、等しい大きさの球で空間を充填(パッキング)するとき、平均密度が立方最密充填配置(面心立方)ならびに六方最密充填配置を越えることはない。これらの配置の密度はおよそ74.05%である。
1998年にトーマス・C・ヘイルズ(英語版)はラースロー・フェイェシュ=トート(英語版)が提案した方法[1]に従ってケプラー予想を証明したと発表した。
多数のケース一つ一つを複雑なコンピュータシミュレーションでチェックするしらみつぶし法(英語版)であった。
査読者は証明が正しいことを「99%確信している」と評した。
よってケプラー予想は定理として受け入れられる寸前に来ている。
2014年、ヘイルズに率いられたフライスペック・プロジェクト(英: the Flyspeck project)のチームは、定理証明支援ツールであるIsabell(英語版)およびHOL Light (英語版)を組み合わせて用いることにより、
ケプラー予想の形式的証明を完了したと発表した。
244:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/29 15:42:55 CoYajOLi.net
>>208
>ノーチラス・テクノロジーズ(東京・品川)
これか(^^
URLリンク(enterprisezine.jp)
EnterpriseZine
DBプロに会いたい!
「すべてのIT屋は全力で反省しろ!」― ノーチラス・テクノロジーズ 神林飛志さん
加山 恵美[著]edited by DB Online ? 2015
245:/10/07 06:00 IT業界にいると、しばしばファンタジーに酔わされる。「ほにゃららコンピューティングが世界を変える」とか「ほにゃららでビジネスの革新を」とか。耳あたりのいい言葉、前向きなコピー、未来を感じさせる謎のカタカナ文字、イベントの基調講演前に流れるかっこいい映像――こうしたITのファンタジーを怒髪天を衝く勢いで否定するのが、今回のDBプロ、ノーチラス・テクノロジーズの神林飛志さんだ。 公認会計士からプレイングCTOへ https://ez-cdn.shoeisha.jp/static/images/article/7263/7263_1.jpg 神林飛志さん。キレ芸が魅力(ちょと怖い) 「ITで世界が変わった?変わってないから!」 「ITなんてなくても世界は回るから!全てのIT屋は反省すべき!全力で反省しろ」 「ITエンジニアなんて世の中で一番要らない職業だから!」 ……とまあ、この調子で取材に来るなり、全否定。けんもほろろ、とりつく島もない勢い。 今回のDBプロはノーチラス・テクノロジーズ 代表取締役社長の神林飛志さん。某イベントで行なわれたパネルディスカッションでこのキレっぷりを目撃したDBオンライン編集部たっての希望で実現した取材である。とあるデータベースの重鎮も「ちょっと怖いかもしれないけど、面白い人だから話を聞いてごらんよ」と太鼓判。そこでやってきてみれば、やっぱりちょっと怖い。でも確かに面白い。 「ぼくはITやコンピュータに幻想がないから」という神林さん、波瀾万丈な経歴の持ち主でもある。抜粋して流れを追ってみよう。 つづく
246:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/29 15:43:18 CoYajOLi.net
>>213
つづき
まず社会人としての経歴は会計事務所の公認会計士から始まった。学生のうちにに資格試験に合格したため、大学卒業前から公認会計士として働き始めたという。そこで企業買収などの案件を手がけた。IT業界だとM&Aなんて珍しい話ではないが、90年代当時の日本では「会社は売りものじゃない」という感覚があったそうだ。ちょっと隔世の感。
「短期間で対象となる企業や業界の事情をマスターしなくてはならないため、仕事はとてもタフでした」と神林さんは振り返る。
数年後、茨城を中心に店舗を展開するカスミストアのCIO兼CTOに就任する。実は神林さんはカスミストア創業者の息子。家業を継ぐような感覚だろうか。神林さんのITキャリアはここがスタート地点となる。
任されたのは汎用(はんよう)機で作られた業務システムの刷新。「フルスクラッチで書き換えました。3年くらいかかったかな」とさらりと言う。自らコードも書いたそうだ。
公認会計士からいきなりプレイングCTOである。当初は「未経験でそんな無茶な!」と思えたが、実は神林さんはコンピュータの知識は十分に持っていた。中学生ごろからパソコンでゲームを始めたそうだ。どんな遊び方をしたかと話を聞くと、いつの間にか話はダンプのとりかたになっていた。ダンプである。ダンプ?
それから学生時代。「大学生の時にLinuxが出まして。インターネットを始めたんですが。とはいえ、当時のインターネットってメールでしたけど」と話す。Linuxは楽しかったらしい。メールが?と思いきや違うらしい。「毎日コンパイルしていました」。
ダンプも
247:コンパイルもお手のもの。神林さんはコンピュータはかなりの経験者であった。だから業務システムの刷新すら、自ら手がけられてしまうわけだ。コンピュータならどんな言語を使おうと「結局バイナリでしょ」という感覚。すごく機械に近いレベルを知っている。経営も知っている。だから冒頭のような話となる。コンピュータやITを概念的なものとしてとらえていない。 ※この続きは、会員の方のみお読みいただけます(登録無料)。 (引用終り) 以上
248:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/29 16:05:59.66 CoYajOLi.net
>>208 参考
もと記事
URLリンク(tech.nikkeibp.co.jp)
2019/10/23 05:00
ニュース解説
NEDOが25億円投じ日の丸RDBを開発中、「国産にも勝機あり」と自信を見せる理由
中田 敦=日経 xTECH/日経コンピュータ
249:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/30 23:10:51.99 4Ujjq2jv.net
Inter-universal geometry と ABC予想 42
スレリンク(math板:534番)-
534 名前:132人目の素数さん[sage] 投稿日:2019/11/29(金) 23:37:45.11 ID:SJwiXU4F [4/5]
(抜粋)
>要するに、圏、トポス、グロタンディーク宇宙で充満多重同型+ラベルを使えばsimulate a∈a、loops of mutationsが可能となり、
>ディオファントス幾何の難問に取り組むことができると考えたのでしょう
>以前、「充満多重同型を認めて初めてラベルの問題になる」と書いたことがありますが、
>おそらく着想から言えば逆で、「ラベルを前提にして充満多重同型を必要・有意味なものにする」と言う方が正しいのでしょうね
(引用終り)
難しすぎて、さっぱり分かりませんが
過去、便法として導入された疑似数学的手法なり対象が
後に、数学として正統化されたことは、多々ある
古くは射影幾何の無限遠点とか
微分方程式解法のヘビサイド演算子法とか
物理学者ディラックのδ関数
微分積分も、ニュートンは現在の視点では決して厳密なものではないとか
IUTも、修正してギャップを埋められるか
あるいは、同じ事を別の圏論構成で証明するとかできれば
それはそれで意味があるのでしょう
250:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/30 23:22:27 4Ujjq2jv.net
>>215 追加(あまり関係ないが)
URLリンク(tech.nikkeibp.co.jp)
2019/11/28 05:00
技術者の転職 ホントの話
転職後は「社内ぼっち」で構わない、薄くて弱い人間関係をたくさん作ろう
天笠 淳=アネックス代表取締役/人事コンサルタント
日経 xTECH
新しい職場、新しい仲間、新しいスキルや経験など、転職で新たに得られるものはたくさんあります。一方で、失うものもあります。これまでに10回の転職を経験している筆者からすれば、転職して失った最も大きいものは「人間関係」でした。
転職すると、よく分かり合っている職場の仲間を失います。同僚だけでなく、顧客や取引先との関係もリセットされます。何年もかけて信頼関係を築き上げてきた人たちに別れを告げて、新たな関係を一から作る必要があります。あまり意識されていませんが、これがなかなか大変なのです。
新たな知識やスキルは努力次第で身につけられるでしょうが、人間関係は相手があるものなので、自分の力で
251:コントロールできるわけではありません。また人間関係を築く土台として、転職先の雰囲気、つまり「組織風土」はとても重要です。組織風土になじめないと、人間関係構築のハードルはさらに高くなります。 転職後、「社内ぼっち(社内でひとりぼっち)」の状態で心細い――。そんな状況に陥る人も少なくないようです。 前職の同僚との関係も変わってしまう 転職すると、前職の同僚との関係も変わります。転職後に何かのついでに前職を訪問すると、良き話し相手だったはずの同僚から「いいな、お前は自由で」「いつかお前と同じように辞めてやる」などといった言葉をかけられることがあります。そして、仕事の愚痴を聞かされます。 別に会社に恨みがあるから転職したわけではなくても、現状の仕事に不満を抱えている人の中では、あなたも恨みを持って辞めたことになっています。またあなたの退職後、偶然退職者が何人か出たりすると、退職の火付け役のような言われ方をします。 筆者にも経験があります。筆者は人事系の職種だったので、「お前が辞めるということは、会社はよほどひどい状態なのではないか」と在職者に言われました。 つづく
252:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/11/30 23:23:00 4Ujjq2jv.net
>>217
つづき
転職が決まると、それまであまり付き合いがなかった人が近寄ってくることもあります。筆者は退職時に、「お前のように、いつかは俺もこの会社を辞めてやる」と何人かに声をかけられた経験があります。しかし面白いもので、そうした人はほぼそのまま同じ会社にとどまっています。転職は無理にするものではありませんから、願望として心に置いているくらいがちょうど良いのかもしれません。
このように、転職すれば前職の同僚との人間関係がギクシャクしたり、途切れたりすることが多くあります。筆者は退職時に「近くまでお越しの際は気軽にお立ち寄りください」と言うようにしていましたが、実際に寄ってくれた元同僚は1人もいませんでした。
薄くて弱い人間関係をたくさん作る
人生のことを真剣に話せるのは、ずっと一緒に何かに取り組んでいた親友よりも弱い絆の友人であると言われています。転職する際には、自分を定点観測してくれる弱い絆の仲間がいることが、意外と励みになります。
弱い絆については、米スタンフォード大学のマーク・グラノヴェッター博士の論文『The Strength of Weak Ties』で紹介されています。日本では「弱い紐帯(ちゅうたい)の強み」と紹介されることが多いようです。筆者なりに意訳すれば、「有益な情報をもたらすのはあまり親しくない人、言い換えれば弱い絆の人」だということです。
つながりが強く厚い人間関係よりも、やや薄めの人間関係の方が、自分にとって役に立つ情報を得やすい。これはキャリアや転職にも当てはまる部分があると筆者は考えています。
薄い関係にある人の方が、その人の状況や人生観を深く知らない分、示唆に富むアドバイスがしやすいようです。また薄い関係にある人からの方が、アドバイスされた方も素直に受け止められる側面があるでしょう。このように転職については、弱い絆の相談者をどれだけ作るかがキーになってくるとも言えます。
転職後に「社内ぼっち」になっても不安にならず、まずは目の前の仕事をこなしながら薄く弱い人間関係をたくさん作ることに努めましょう。少し時間がたったら、その中で自分が必要とする人、関係性を深めていきたい人とのつながりを強めていけばよいのではないでしょうか。
(引用終り)
以上
253:現代数学の系譜 雑談 古典ガロア理論も読む
19/12/01 11:01:07.28 id6ENHqe.net
メモ
URLリンク(ja.wikipedia.org)
モデル理論
(抜粋)
モデル理論(英語: model theory)は、数理論理学
254:による手法を用いて数学的構造(例えば、群、体、グラフ:集合論の宇宙)を研究(分類)する数学の分野である。 モデル理論における研究対象は、形式言語の文に意味を与える構造としてのモデルである。もし言語のモデルがある特定の文(英語版)または理論(英語版)(特定の条件を満足する文の集合)を満足するならば、それはその文または理論のモデルと呼ばれる。 モデル理論は代数および普遍代数と関係が深い。 この記事では、無限構造の有限一階モデル理論に焦点を絞っている。有限構造を対象とする有限モデル理論は、扱っている問題および用いている技術の両方の面で、無限構造の研究とは大きく異なるものとなっている。 完全性は高階述語論理または無限論理において一般的には成立しないため、これらの論理に対するモデル理論は困難なものとなっている。しかしながら、研究の多くの部分はそのような言語によってなされている。 モデル理論が体へ応用された初期の結果の例は、タルスキの実閉体についての量化記号消去法(英語版)、疑有限体 (pseudo finite field) 上のアックス(英語版)の定理、そしてロビンソンの超準解析の開発がある。 古典モデル理論の発展において、安定理論(英語版)の誕生が(非可算カテゴリー論 [uncountably categorical theory] 上のMorleyの範疇性定理(英語版)およびシェラハの分類プログラムを通して)重要なステップとなった。 この安定理論は、理論が満たす構文条件に基づくランクと独立性(英語版)の算法を発展させた。この数十年で、応用モデル理論はより純粋な安定理論と繰り返し融合してきた。この合成の結果は、この記事では幾何学的モデル理論と呼ばれている。 例 非自明なモデルの文脈における統語論および意味論を含む基本的な関係を説明するために、統語論側でペアノの公理のような自然数についての適切な公理とその関連する理論から始めることができる。意味論側では、通常の連続数がモデルを構成する。1930年代、スコーレムはその公理を満たす別のモデル(算術の超準モデル)を開発した。 つづく
255:現代数学の系譜 雑談 古典ガロア理論も読む
19/12/01 11:01:58.86 id6ENHqe.net
>>219
つづき
普遍代数
詳細は「普遍代数学」を参照
普遍代数の根本的な概念はシグネチャ(英語版) σ および σ-代数である。これらの概念は構造(英語版)の記事において詳細に定義されている。
一階述語論理
詳細は「一階述語論理」を参照
普遍代数がシグネチャ(英語版)の意味論を与える一方、論理は統語論を与える。恒等式および疑恒等式(英語版)の項とともに、普遍代数はいくつかの限定的な統語論のツールも利用している。例えば、一階述語論理は量化を明確にし否定を取り入れた結果である。
公理化可能性、量化記号消去、およびモデル完全性
モデル理論を群のような(グラフ理論においては木のような)数学的対象のクラスへ応用する最初のステップは、多くの場合は自明であるが、シグネチャ σ を選択することおよびその数学的対象を σ-構造で表現することである。
次のステップは、そのクラスが初等クラス(英語版)、すなわち、一階述語論理における公理化可能である(すなわち、σ-構造が理論Tを満足する場合のみ、クラス内にそのσ を含むような理論T が存在する)ことを示すことである。
例えば、このステップは木では失敗する、連結性が一階述語論理内で表現できないためである。公理化可能性は、モデル理論が正当な対象について語ることができるのを保証する。
量化記号消去法は、モデル理論がその対象について多くのことを言い過ぎないようにすることを保証する。理論 T は、T におけるすべてのモデルの下位構造(英語版)(これもモデルである)が初等下位構造(英語版)ならモデル完全(英語版)と呼ばれる。
つづく
256:現代数学の系譜 雑談 古典ガロア理論も読む
19/12/01 11:03:44.68 id6ENHqe.net
つづき
範疇性
一階述語論理の節で見られたように、一階理論は範疇的でありえない。すなわち、一階述語論理は同形なある一
257:意なモデルを、そのモデルが有限でない限り記述することができない。 しかし、二つの有名なモデル理論に関する定理は基数κ についての κ-範疇性のより弱い概念を扱うことができる。もし濃度がκ である理論Tの二つのモデルが同形であるならば, T はκ-範疇的と呼ばれる。 κ-範疇性の疑問は、κ がその言語の濃度よりも大きいかどうか(すなわち、 アレフ _{0} + |σ|, ここで |σ| はシグネチャの濃度)に決定的に依存していることが分かる。 有限または可算のシグネチャについて、これは非可算のκ についての アレフ _{0}-濃度と κ-濃度の間に根本的な相違があることを意味している。 モデル理論と集合論 集合論(これは可算言語において表現されている)は可算モデルをもつ。すなわち、非可算集合の存在を仮定している集合論の文が可算モデルにおいても真であることから、これはスコーレムのパラドックス(英語版)として知られている。 特に、連続体仮説の独立性(英語版)の証明はモデル内から見たとき非可算として現れるがモデル外から見たとき可算となるような集合をモデルの対象として必要とする。 モデル理論的な観点は集合論にとって有用である。例えば、ゲーデルがコーエンにより開発された強制法を用いて行った構成可能集合に対する仕事によって、(哲学的に興味深い)選択公理の独立性(英語版)および集合論の他の公理からの連続体仮説を証明することができる。 つづく
258:現代数学の系譜 雑談 古典ガロア理論も読む
19/12/01 11:04:21.33 id6ENHqe.net
>>221
つづき
初期の歴史
主題としてのモデル理論はおおよそ二十世紀の中頃から存在している。しかしながら、特に数理論理学においてそれ以前から研究されていたいくつかの理論はモデル理論的な性質を持っていたと考えることができる。
モデル理論の系譜における最初の顕著な成果はレオポールト・レーヴェンハイム(英語版)により1915年に発表された下方レーヴェンハイム-スコーレムの定理の特別な事例である。
コンパクト性定理は、トアルフ・スコーレムによる仕事において萌芽が見られるが[1]、ゲーデルの完全性定理の証明中の補題として1930年に初めて発表された。
レーヴェンハイム-スコーレムの定理およびコンパクト性定理は1936年および1941年にモルツェフ(英語版)によって一般的な形で形式化された。
(引用終り)
以上
259:現代数学の系譜 雑談 古典ガロア理論も読む
19/12/01 11:18:54.29 id6ENHqe.net
>>221
>例えば、ゲーデルがコーエンにより開発された強制法を用いて行った構成可能集合に対する仕事によって、(哲学的に興味深い)選択公理の独立性(英語版)および集合論の他の公理からの連続体仮説を証明することができる。
ここ誤訳やね
原文は下記
”for example in Kurt Godel's work on the constructible universe, which, along with the method of forcing developed by Paul Cohen can be shown to prove the (again philosophically interesting) independence of the axiom of choice and the continuum hypothesis from the other axioms of set theory.”
<上記のGoogle和訳に手を入れたもの>
例えば、クルト・ゲーデルが研究した構成可能な宇宙を使って、ポール・コーエンによって開発された強制の方法とともに、選択公理及び連続体仮説が、集合論の他の公理のからの、(哲学的に興味深い)独立性を証明することができる。
URLリンク(en.wikipedia.org)
Model theory
(抜粋)
7 Set theory
The model-theoretic viewpoint has been useful in set theory; for example in Kurt Godel's work on the constructible universe, which, along with the method of forcing developed by Paul Cohen can be shown to prove the (again philosophically interesting) independence of the axiom of choice and the continuum hypothesis from the other axioms of set theory.
(引用終り)
260:現代数学の系譜 雑談 古典ガロア理論も読む
19/12/01 11:24:10.70 id6ENHqe.net
>>223 追加
URLリンク(ja.wikipedia.org)
連続体仮説
(抜粋)
連続体仮説(れんぞくたいかせつ、Continuum Hypothesis, CH)とは、可算濃度と連続体濃度の間には他の濃度が存在しないとする仮説。19世紀にゲオルク・カントールによって提唱された。現在の数学で用いられる標準的な枠組みのもとでは「連続体仮説は証明も反証もできない命題である」ということが明確に証明されている。
歴史
この仮説は 19 世紀に集合論の創始者、ゲオルク・カントールによって提出された。彼自身この解決に熱心に取り組んだことが知られている。可算濃度より連続体濃度の方が大きいことは、カントール�