19/11/24 13:31:10 GGJQySam.net
>>141
>なお、望月論文のIIだったかIIIだったかに、脚注として望月先生がこれを取入れたと思ったが
ご指摘がありました望月論文?だったかも
?のファイル内検索 ”Riemann” 18ヒット
最初のところだけ、引用しておいた
Inter-universal geometry と ABC予想 42
スレリンク(math板:368番)-
368 名前:132人目の素数さん[sage] 投稿日:2019/11/24(日) 12:41:56.89 ID:nJi2wOMf
?.探さないでください
”Riemann”でファイル内検索かけると
URLリンク(www.kurims.kyoto-u.ac.jp)
Mochizuki, Shinichi (2012d), Inter-universal Teichmuller Theory IV: Log-volume Computations and Set-theoretic Foundations (PDF)
(抜粋)
P34
Finally, in the context of the normalized determinants that appear in (a),
it is interesting to note the role played
by the prime number theorem ? i.e., in essence, the Riemann zeta function [cf. Proposition 1.6 and its proof]
? in the computation of “inter-universal analytic torsion” given in the proof of Theorem 1.10.
P48
In this context, it is of interest to observe that the form of the
“ term” δ1/2 ・ log(δ) is strongly reminiscent of well-known intepretations of the
Riemann hypothesis in terms of the asymptotic behavior of the function defined
by considering the number of prime numbers less than a given natural number.
Indeed, from the point of view of weights [cf. also the discussion of Remark 2.2.2
below], it is natural to regard the [logarithmic] height of a line bundle as an object
that has the same weight as a single Tate twist, or, from a more classical point of
view, “2πi” raised to the power 1. On the other hand, again from the point of view
of weights, the variable “s” of the Riemann zeta function ζ(s) may be thought of
as corresponding precisely to the number of Tate twists under consideration, so a
single Tate twist corresponds to “s = 1”.