現代数学の系譜 工学物理雑談 古典ガロア理論も読む79at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79 - 暇つぶし2ch115:現代数学の系譜 雑談 古典ガロア理論も読む
19/11/23 06:57:04.18 iKDSmfWl.net
>>102
つづき
完備性
 さて「ヒルベルト空間」はまだなのかと待っていることと思うが、ここまでの話にもう一つ条件を加えるだけでいい。
内積空間が完備性を持つとき、「ヒルベルト空間」という。
ノルム空間が完備性を持つとき、「バナッハ空間」という。
 バナッハ空間については今回の話とは関係ないが、まぁ、数学ではこんな具合に分類されて名前が付いているんだよ、という雰囲気をつかめるように書いておいた。
 な。物理学者は「ヒルベルト空間」なんて言葉でカッコつけなくてもいいんだよ。他の数学的空間の性質と区別する必要があるときにだけ使えばいいんだからさ。
 で、気になっていることと思うが、「完備性」とは何だろうか。
 コーシー列が収束する時、完備性を持つのだそうだ。ではコーシー列とは何かと言えば、集合から好きな要素を取り出して並べた時に、あるところより先の要素を見ると必ず、それらの要素間の距離がどんな狭い範囲にでも収まってしまう、そんなところが必ずある、という並びのことらしい。ああ!数学ってのは七面倒くさい!!!とにかく、どこまでも狭い範囲に収まって行くような並びのことだ。
それで、狭い範囲に収まって行くのなら収束していると言えるのではないか、というと、そういう意味ではない。例えば √2 に限りなく近付くコーシー列があったとしても、この空間内に √2 という無理数が定義されていなければ √2 に収束するとは言えないわけだ。
 数学的な表現はやめて、分かりやすく言い直そう。これはベクトルが連続であることを定義しているのである。この性質は微分などを定義するためには是非とも必要なものだ。そして、それはもっと分かりやすく言えば、このベクトルの要素は実数か複素数の範囲でなければならないという意味である。初めからそう言えよ、って?私もそう思う。
つづく


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch