20/01/27 17:01:18 QSsw4R/8.net
>>980
iidって
independent identical distribution?
1037:132人目の素数さん
20/01/27 17:27:24 t+jrfUAN.net
正解は解なしで解答不能じゃないの?
確かにないみたいだし。
1038:132人目の素数さん
20/01/27 17:27:48 t+jrfUAN.net
>>982
yes
1039:132人目の素数さん
20/01/27 17:31:46 t+jrfUAN.net
>>980
あ、各分布は連続分布関数を持つはいるかもしれない。
いらないかもしれない。
1040:132人目の素数さん
20/01/27 17:54:36 QSsw4R/8.net
>>983
つまり、
解答不能を論証する問題
1041:132人目の素数さん
20/01/27 18:16:48 t+jrfUAN.net
>>986
プログラム組んでみたらないみたいですな。
1042:132人目の素数さん
20/01/27 18:24:11 t+jrfUAN.net
(a,b,c,d,e,f,g,h)=((!!0),(!!1),(!!2),(!!3),(!!4),(!!5),(!!6),(!!7))
nOfLiers x = length $ filter (==False) x
nOfHonests x = length $ filter (==True) x
asay x = (nOfLiers x) > (nOfHonests x)
bsay x = not $ h x
csay x = not $ b x
dsay x = (not $ c x) && (not $ f x)
esay x = nOfLiers x>=1
fday x = nOfLiers x>=2
gsay x = not $ e x
hsay x = (a x) && (f x)
xs = (!!8) $ iterate (\x->[a:b| a<-[True,False],b<-x]) [[]]
isFitToTheySaid x = all (==True) $ map (\y-> y x) [asay, bsay,csay,dsay,esay,fday,gsay,hsay]
fits = [x|x<-xs,isFitToTheySaid x]
main = do
print $ length fits
----
0
1043:132人目の素数さん
20/01/27 18:30:51 YG6teE6r.net
あ、間違い。
15行目
isFitToTheySaid x = all (==True) $ zipWith (==) x $ map (\y-> y x) [asay, bsay,csay,dsay,esay,fday,gsay,hsay]
どのみち0。
1044:132人目の素数さん
20/01/27 18:36:21 72GikKsS.net
>>981
G と E だけ抜き出すと、
> E「8人の中に、少なくとも1人嘘つきがいる」
> G「Eは嘘つきである」
E が正直で G が嘘つきで嘘を言ってた場合、
この組の発言は他に影響を与えないし依存もしていないので
他の 6人の発言に矛盾があろうとなかろうと
E は正直というのは駄目?
1045:132人目の素数さん
20/01/27 18:45:10 QSsw4R/8.net
>>980
Yiを平均=分散=7のポアソン分布として Xi=Yi-7 (平均を0にするため)、a=3、qn = P(|ΣXi|<a) (1-pnをqnとした)として√(n)*qnをグラフにしてみた。
URLリンク(i.imgur.com)
√(2/π)a/σ= 0.9047161 だけど、収束する様子がない。
離散分布だと成立しないのかも?
1046:132人目の素数さん
20/01/27 18:54:26 VuOY61Uq.net
>>980
各Xiを, {-1,1}のどちらかの値をそれぞれ確率1/2でとる確率変数と定めると, a=0.5 と定めた時に
nが奇数なら 1-p_n=0 になる一方, nが偶数なら 1-p_n=2^(-n)・nC(n/2)≒√(2/(πn)) になるから, 成り立たなさそう
連続分布関数に限定すればおそらく同じような問題は起きないぽいけど, これが本当に十分条件かは自信ない…
1047:132人目の素数さん
20/01/27 19:12:14 YG6teE6r.net
>>989
また訂正
fday x = (not $ f x) || (nOfLiers x>=2)
gsay x = (not $ g x) || (not $ e x)
hsay x = (not $ h x) || ((a x) && (f x))
fが言ったのは
私は嘘つきか嘘つきの数は2以上
ね。
1048:132人目の素数さん
20/01/27 19:14:07 YG6teE6r.net
>>991-992
分布関数が不連続の点ではレヴィの反転定理が成立しないので今持ってる証明だと成立しない可能性はありますね。
今持ってる証明が正しい保証もないけどw
1049:132人目の素数さん
20/01/27 19:16:43 QSsw4R/8.net
>>988
>プログラム組んでみたらないみたいですな。
いつも華麗なコードをありがとうございます(使わないのでHaskellはほぼ忘れておりますが)
実際、正解がないようにプログラムで作ったので、他の言語でそれが確認されて光栄。
珍しく、魔法の呪文のようなHaskellのコードの長さがRと同程度なのには驚き。いつも数十行のRコードをHaskell数行で実行されちゃいますので。
TE=expand.grid(0:1,0:1,0:1,0:1,0:1,0:1,0:1,0:1)
colnames(TE)=LETTERS[1:8]
f <- function(x){
all(c(
x[1]==1 & sum(x==0)>sum(x==1) | x[1]!=1 & !(sum(x==0)>sum(x==1)),
x[2]==1 & x[8]==0 | x[2]!=1 & x[8]!=0,
x[3]==1 & x[2]==0 | x[3]!=1 & x[2]!=0 ,
x[4]==1 & (x[3]==0 & x[6]==0) | x[4]!=1 & !(x[3]==0 & x[6]==0),
x[5]==1 & sum(x==0)>=1 | x[5]!=1 & !(sum(x==0)>=1),
x[6]==1 & sum(x==0)>=2 | x[6]==0,
x[7]==1 & x[5]==0 | x[7]==0,
x[8]==1 & (x[1]==1 & x[6]==1) | x[8]==0
))
}
TE[apply(TE,1,f),]
1] A B C D E F G H
<0 rows> (or 0-length row.names) # 0 行=ありませんという表示
1050:132人目の素数さん
20/01/27 19:20:36 jyV1bY+U.net
>>974
多分フーリエ変換よりもこういうの勉強した方が理解につながるかと
URLリンク(my.reset.jp)
1051:132人目の素数さん
20/01/27 19:28:57 VuOY61Uq.net
あとこれは本当に興味本意だけど, 例えば
各Xiを集合{-1, 1-√2, √2}上の離散一様分布とした時に同じ主張が成り立つか, というのは興味がある
あくまで離散的だけど, 畳み込みする毎に中央あたりがどんどん"密"になっていく訳だから…
1052:132人目の素数さん
20/01/27 19:38:48 QSsw4R/8.net
>>990
6人の発言に矛盾があったら、E=正直、G=嘘つきの前提が成立しなくなるよ。
1053:132人目の素数さん
20/01/27 19:43:56 VuOY61Uq.net
>>996
ありがてえ…わかりやすい
1054:132人目の素数さん
20/01/27 20:06:25 EX13BAvY.net
( ・∀・)< そろそろ次スレ
1055:1001
Over 1000 Thread .net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 83日 23時間 39分 26秒
1056:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています