20/01/18 11:50:29.99 PXyx+OwH.net
>>669
>>670
円の半径を1, Bの速さを1, Aの速さをaとする。
Aがθ(t)で追ったとする。
|dθ/dt| ≦ a,
最初、Bは Aと逆方向 π+θ(t) を保ちながら速さ1で逃げる。
中心~Bの距離を r(t) とする。
dr/dt = √{1 - rr(dθ/dt)^2} ≧ √{1-(ar)^2},
r ≧ sin(at)/a,
時刻 π/2a までに r=1/a に到達する。
次に、Bは円周Cまで直進する。所要時間: (a-1)/a,
AがCに到着するまでの所要時間: π/a
a<π+1 ならば逃げ切れる。
r=1/a で直角に曲がらずに丸く曲がった方が短くなる。
aはもっと大きい可能性・・・