19/12/23 12:11:18.51 VYNDirBk.net
>>210
男の人数をp、女の人数をqとしてp行q列行列Aを
Aij=1 男iと女jが知り合いのとき
. 0 otherwise
で定める。
またAの転置行列をA~で表すとする。
条件より全行ベクトルの和は全成分がnの1行q列のベクトルであり、その成分の和はqnである。
同様に全列ベクトルの和は全成分がnのp行1列のベクトルであり、その成分の和はpnである。
これらが等しいからp=q。
p次単位行列をI、全成分が1のp次正方行列をBとすれば条件より
AB=BA=nB
AA~=(n-k)I+kB
である。
よってAはBと可換であり、したがって(n-k)I+kBとも可換である。
ここでBはrank1の行列でその固有値pは(k-n)/kと一致しないから(n-k)I+kBは可逆である。
よってAも可逆であり
A~=A^(-1)((n-k)I+B)
もAと可逆である。
以上によりA~A=(n-k)I+B
であり主張は示された。□