19/12/23 12:11:18.51 VYNDirBk.net
>>210
男の人数をp、女の人数をqとしてp行q列行列Aを
Aij=1 男iと女jが知り合いのとき
. 0 otherwise
で定める。
またAの転置行列をA~で表すとする。
条件より全行ベクトルの和は全成分がnの1行q列のベクトルであり、その成分の和はqnである。
同様に全列ベクトルの和は全成分がnのp行1列のベクトルであり、その成分の和はpnである。
これらが等しいからp=q。
p次単位行列をI、全成分が1のp次正方行列をBとすれば条件より
AB=BA=nB
AA~=(n-k)I+kB
である。
よってAはBと可換であり、したがって(n-k)I+kBとも可換である。
ここでBはrank1の行列でその固有値pは(k-n)/kと一致しないから(n-k)I+kBは可逆である。
よってAも可逆であり
A~=A^(-1)((n-k)I+B)
もAと可逆である。
以上によりA~A=(n-k)I+B
であり主張は示された。□
226:132人目の素数さん
19/12/23 12:18:54.81 ecugu1xJ.net
>>213
第二試合にAが勝つ確率は通算勝率の3/7
Aが勝ったら第三試合に勝つ確率は4/8
Aが負けたら第三試合に勝つ確率は3/8
になるという設定。
227:132人目の素数さん
19/12/23 12:45:22.48 Vck4TjAJ.net
>>212
同じになった
計算間違えているとするとなかなか奇跡的w
228:132人目の素数さん
19/12/23 13:02:50.72 ecugu1xJ.net
>>217
私の計算でも0.5になった。
229:132人目の素数さん
19/12/23 13:17:01.60 Vck4TjAJ.net
じゃあ合ってるのか
何かうまい考え方をすると簡単に五分五分だとわかることなんだろうか
230:132人目の素数さん
19/12/23 13:19:05.26 ecugu1xJ.net
100万回のシミュレーションでも0.5みたい。
> rm(list=ls())
> N_series <- function(A=1,B=0,w=4,a=2,b=4,k=1e6){
+ sim <- function(){
+ while(A < w & B < w){
+ p=(A+a)/(A+B+a+b)
+ g = rbinom(1,1,p)
+ if(g==1){
+ A=A+1
+ }else{
+ B=B+1
+ }
+ }
+ A > B
+ }
+ mean(replicate(k,sim())) # Pr[A wins]
+ }
> N_series()
[1] 0.500051
231:132人目の素数さん
19/12/23 13:19:40.51 ecugu1xJ.net
>>219
実はそれが知りたくて投稿してみた。
232:132人目の素数さん
19/12/23 13:30:37.77 Vck4TjAJ.net
nを2以上の自然数として(2n-1)戦でn勝した方が勝ちというシリーズで1戦目を負けた方のチームの勝率がn/(2n-1)になるとシリーズ優勝の確率は同率になるのかな?
233:132人目の素数さん
19/12/23 16:52:56.92 /G9qsiWR.net
>>212
不透明な壺と透明な壺を用意し、どちらにも、n個の白玉とm個の黒玉を入れておく。(n、mは正整数)
「不透明な壺に手を入れ、よくかき混ぜて球を一つ取り出し、色を確認して戻し、
同じ色の球を透明な壺から不透明な壺へ一つ移す。」
という操作を繰り返し行い、不透明な壺から白玉の方が先に無くなる確率は?
(恐らく)答え n,mの値に関係なく 1/2
という問題の具体例版 だと思う。
234:132人目の素数さん
19/12/23 16:55:01.28 /G9qsiWR.net
誤:という操作を繰り返し行い、不透明な壺から白玉の方が先に無くなる確率は?
正:という操作を繰り返し行い、 透明な壺から白玉の方が先に無くなる確率は?
235:イナ
19/12/23 18:31:02.00 YQobTPKD.net
前>>214
>>212え、Bのほうが有利なんじゃないの? 先にAが勝っただけで通算だとBのほうが勝率いいじゃん。第2戦は4/7の確率でBが勝つよ。Bが勝った場合、第3戦は5/8の確率でBが勝つ。Bが勝った場合、第4戦は6/9=2/3の確率でBが勝つ。Bが勝った場合、第5戦は7/10すなわち7割の確率でBが勝って日本一。 そろともなにか? 負ける場合も考えると勝つ確率は変わると言うのか? じゃあ考えたら負けだ。7割勝つ。信じるしかない。
237:132人目の素数さん
19/12/23 18:49:59.56 /K57AvEV.net
>>225
>先にAが勝っただけ
という時点で運命が決まったんじゃないの?
238:132人目の素数さん
19/12/23 19:18:17.09 /K57AvEV.net
0.5を算出する前提
Aが優勝する以後の勝敗の順列(1を勝ちとする)は以下の20通り。
> (dat3=dat[apply(dat,1,sum)==3,]) # Aあと3勝の仕方 末尾に連続する0は無視
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 0 0 1 1 1
[2,] 0 0 1 0 1 1
[3,] 0 0 1 1 0 1
[4,] 0 0 1 1 1 0
[5,] 0 1 0 0 1 1
[6,] 0 1 0 1 0 1
[7,] 0 1 0 1 1 0
[8,] 0 1 1 0 0 1
[9,] 0 1 1 0 1 0
[10,] 0 1 1 1 0 0
[11,] 1 0 0 0 1 1
[12,] 1 0 0 1 0 1
[13,] 1 0 0 1 1 0
[14,] 1 0 1 0 0 1
[15,] 1 0 1 0 1 0
[16,] 1 0 1 1 0 0
[17,] 1 1 0 0 0 1
[18,] 1 1 0 0 1 0
[19,] 1 1 0 1 0 0
[20,] 1 1 1 0 0 0
239:132人目の素数さん
19/12/23 19:19:27.58 /K57AvEV.net
Aが優勝する以後の勝敗の順列=Aが優勝するときの第二試合以後の勝敗の順列
240:132人目の素数さん
19/12/23 23:55:27.94 /G9qsiWR.net
>>223
続き
白玉がn個出る前に、黒玉がk(k<m)個でる確率は
黒玉が連続してk個出て、白玉が連続してn個出る確率のC[n+k-1,k]倍なので、
C[n-1+k,k]*{m*(m+1)*...*(m+k-1)}*{n*(n+1)*...*(2n-1)}/{(n+m)*(n+m+1)*...*(2*n+m+k-1)}
=C[n-1+k,k]*P[m+k-1,k]*P[2n-1,n]/P[2n+m+k-1,n+k]
黒玉が0個からm-1個までの和を取れば、求める確率なので、
Σ[k=0,m-1]{C[n-1+k,k]*P[m+k-1,k]*P[2n-1,n]/P[2n+m+k-1,n+k]}
が求めるもの。
m,nに適当な数字を入れてWolfram先生に計算してもらったところ、
m,nに関係なく、 1/2 になるようです。予想は正しそうですが、証明はちょっと難しい。
241:
19/12/24 00:11:35.58 mv44BLS5.net
前>>225
>>226それはどうかな。
俺は俺が勝つために投げたし、みんな勝つために打ったり守ったり走ったりしたと思う。結果的に7割勝つとわかった。それ以上でもそれ以下でもない。
最初Aに負けて、どうなるかと思った。もうだめなんじゃないかとさえ思ったよ。
それで運命が決まったとは思わないけど、運命というものがあるのなら、あるいはそうかもね。
242:132人目の素数さん
19/12/24 00:23:22.12 5iwLbmeP.net
超幾何定理の香りが漂うような‥‥
243:132人目の素数さん
19/12/24 02:18:50.81 9bkfghx0.net
>>230
優勝するにはAはあと3勝必要だがBはあと4勝必要と運命づけられちゃったと言えない?
244:132人目の素数さん
19/12/24 03:01:07.37 EQnFLeQj.net
ポリヤの壺っていう有名問題?
245:イナ
19/12/24 13:29:13.67 mv44BLS5.net
前>>230
>>232だから、運命なんてわかんないよ。勝ってるうちに強くなるかもしれないし、試合の前とあとではもう違うんだぜ。運命なんて変えてやるよ。みんなそう思ったと思う。
246:132人目の素数さん
19/12/24 14:19:00.00 A1/Tuq06.net
>>229
m,nを1~10からランダムに選んで10万回のシミュレーションをしてみました。
Polya_Urn <- function(k=1e5){
mn=sample(1:10,2)
m=mn[1]
n=mn[2]
a=rep(0:1,c(m,n))
b0=b1=0
sim <- function(){
while(b0<m & b1<n){
b=sample(a,1)
a=c(a,b)
if(b==1){b1=b1+1}else{b0=b0+1}
}
b1==n
}
c(Prob=mean(replicate(k,sim())),m=m,n=n)
}
> Polya_Urn()
Prob m n
0.50125 8.00000 10.00000
> Polya_Urn()
Prob m n
0.50022 9.00000 5.00000
> Polya_Urn()
Prob m n
0.50065 3.00000 8.00000
> Polya_Urn()
Prob m n
0.49939 2.00000 4.00000
> Polya_Urn()
Prob m n
0.49657 1.00000 9.00000
m,nに関わらず、0.5になるようです。
247:132人目の素数さん
19/12/24 14:20:51.91 A1/Tuq06.net
>>234
ターミネーターのセリフだな。
The future is not set. There is no fate but what we make for ourselves.
248:132人目の素数さん
19/12/24 14:23:54.14 gLqWXW4m.net
計算するまでもなく1/2になるとわかるような考え方がありそうに思えるのだが全然思いつかない
249:132人目の素数さん
19/12/25 05:17:44.73 ylc577yv.net
確率 n/(n+m) で白玉を引いて壺の中の白玉が一つ増える、あるいは、
確率 m/(n+m) で黒玉を引いて壺の中の黒玉が一つ増える、と言う操作(現象)を
確率1で、白成分が、n/(n+m)、黒成分が、m/(n+m) で構成されているキメラ玉を壺に投入する操作と同等
と考えると、白玉が2n個(相当)になるのと、黒玉が2m個(相当)になるのは、同時なので、
どちらが勝つのかが 1/2 づつになるのは当然と 強弁できる かな...?
250:132人目の素数さん
19/12/25 07:37:46.51 oEKznZ6+.net
ポリアの壺問題の帰納法も計算も要らない証明
URLリンク(shiatsumat.hat) enab og.com/entry/2014/12/08/183943 (空白は除去してください)
ってあるのだけど、私には理解できなかった。
251:132人目の素数さん
19/12/25 07:39:57.44 oEKznZ6+.net
>>239
urlがうまく貼れなかったので
ポリアの壺問題の帰納法も計算も要らない証明
で検索してください。
252:132人目の素数さん
19/12/25 09:02:05.31 VfGP4dZh.net
>>239-240
この問題はポリヤの壺の発展形。
残念ながらそのリンクの先の証明だけでは無理です。
253:132人目の素数さん
19/12/25 20:37:42.24 oEKznZ6+.net
>>225
優勝するにはAは現時点の勝率3/7であと3勝、Bは現時点の勝率4/7あと4勝しなくちゃいけない
どちらが有利か、という問題だと思う。
254:イナ
19/12/26 15:55:13.35 vjdKTfeM.net
前>>234
>>242Bのほうが有利だね。たとえAが第1戦から3連勝したって最終戦に勝つ確率は6割。それに比べBは先にも言ったように7割。わずかだがBの監督が宙に舞う姿を想像するね。
255:132人目の素数さん
19/12/26 18:02:51.71 S3aobCgr.net
例えば残り四試合で「Aが勝ち」で勝負がつくときのパターンとそれに伴う計算式は次
○○●○ :(3/7)*(4/8)*(4/9)*(5/10)
○●○○ :(3/7)*(4/8)*(4/9)*(5/10)
●○○○ :(4/7)*(3/8)*(4/9)*(5/10)
各因子を分数として見ると、各々は異なるが、分子側全体、分母側全体として見ると、
これらは数字の並べ替えに過ぎず、全て同じ値を持つ。この点に注目して、解答を作ると、
残り三試合で「Aが勝ち」で終了
○○○ :(3/7)*(4/8)*(5/9)=5/42
残り四試合で「Aが勝ち」で終了
[●○○]○ :C[3,1]*(4/7)*(3/8)*(4/9)*(5/10)=1/7
(“[]”は[]内の並べ替えを意味する)
残り五試合で「Aが勝ち」で終了
[●●○○]○ :C[4,2]*(4/7)*(5/8)*(3/9)*(4/10)*(5/11)=10/77
残り六試合で「Aが勝ち」で終了
[●●●○○]○ :C[5,3]*(4/7)*(5/8)*(6/9)*(3/10)*(4/11)*(5/12)=25/231
5/42+1/7+10/77+25/231=1/2
256:イナ
19/12/26 18:04:24.76 vjdKTfeM.net
前>>243
第2戦Aが勝って第3戦Aが勝って第4戦Aが勝って優勝する確率は(3/7)(4/8)(5/9)=5/42―①
第2戦Aが勝って第3戦A級が勝って第4戦Bが勝って第5戦Aが勝って優勝する確率は、(3/7)(4/8)(4/9)(5/10)=1/21―②
第2戦Aが勝って第3戦Aが勝って第4戦Bが勝って第5戦Bが勝って第6戦Aが勝って優勝する確率は、(3/7)(4/8)(4/9)(5/10)(5/11)=5/231―③
第2戦Aが勝って第3戦Aが勝って第4戦Bが勝って第5戦Bが勝って第6戦Bが勝って第7戦Aが勝って優勝する確率は、(3/7)(4/8)(4/9)(5/10)(6/11)(6/12)=1/77―④
257: ①+②+③+④=1/6+8/231=93/462=31/154 Aが優勝する確率は3100/154=1050/77<(2割ない) Bのほうが有利。
258:132人目の素数さん
19/12/26 18:17:11.99 RCja5F+r.net
>>243
>たとえAが第1戦から3連勝したって
Aはシリーズ開始後はあと3勝すればいいのだから
Aの勝ちを1負けを0で表示すると
Aが優勝するには第2試合以後は
> dat3[17:20,]
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 1 0 0 0 1
[2,] 1 1 0 0 1 0
[3,] 1 1 0 1 0 0
[4,] 1 1 1 0 0 0
の4通り
Bはあと4勝しなくちゃいえないからAが第1戦から3連勝したら
2戦目以後は
1 1 0 0 0 0 (Aの勝ちが1)
でしか優勝できない。
前者は0.1991342
後者は0.01515152
となる。
計算式は
g <- function(x){ # Aの勝敗数列の起こる確率
(tva=cumsum(x)+3) # Aの通算の勝利数
win=c(3,tva)/(7:13) # 試合前の勝利確率
lose=1-win # 負ける確率
(y=rbind(win,lose)[,1:6]) #最終勝率は不要なので除く
p=rep(1,6) # p : 通算勝率の入れ子
for(i in 1:6){
j=ifelse(x[i]==1,1,2) # 勝負によりwin/loseを選択する
p[i]=y[j,i]
if(tva[i]==6) break # シリーズ前2勝+シリーズ4勝で終了
}
cat(p,'\n') # 通算勝率の変遷
return(prod(p)) # その変遷が起こる確率
}
sum(apply(dat3,1,g)) # 可能な順列の確率を総和
259:132人目の素数さん
19/12/26 18:33:04.52 mvnmdT7I.net
>>244
>218ですが、計算ありがとうございました。
きりのいい数字になってびっくりしました。
260:132人目の素数さん
19/12/26 18:38:23.54 mvnmdT7I.net
>>244
>各因子を分数として見ると、各々は異なるが、分子側全体、分母側全体として見ると、これらは数字の並べ替えに過ぎず、全て同じ値を持つ。
全く気づきませんでした、プログラムできればいいと愚考してましたので。
261:132人目の素数さん
19/12/26 18:45:38.70 mvnmdT7I.net
>>244
正解だと思うのですが
5/42+1/7+10/77+25/231=1/2
って偶然でしょうか?
>219の疑問は残ります。
262:132人目の素数さん
19/12/26 19:11:06.56 RCja5F+r.net
>>245
いつも楽しいレスをありがとうございます
>244が正解だと思います。
263:132人目の素数さん
19/12/26 19:24:21 RCja5F+r.net
A:現時点での勝率は3/7であと3勝が必要
B:現時点での勝率は4/7であと4勝が必要
勝率は通算成績で決まり現時点でA3勝B4勝である。
264:132人目の素数さん
19/12/26 19:28:03 S3aobCgr.net
>>249
>>244の内容は >>223の投稿時に作っていたものです。数字の羅列が主なので、結論としては同じ、>>223
のみの投稿にしました。しかし、その内容や考え方は、>>229で生かされています。
よかったら、過去の投稿も読み直してみてください。
偶然か? との疑問がありましたが、一定の条件下で起こる必然現象でしょう。
これが「ポリアの壺問題」の帰結です。
あるいは、もっとシンプルに、次のような思考実験が考えやすいかもしれません。
直方体型の水槽がある。水槽には水が入れられており、水は「(垂直な平面による)仕切り」により
二つの区画に分けられている。この仕切りは、自由に動くようになっている。単に位置が可変というだけでは無く、
二つの区画に分けられている水の「高さ」が同じになるように、自動的に動くようになっている。
この水槽に水を入れ、外に置いておいた。昨夜、雨が降っていたので、水槽に入っている水の量が増えているはずだが、
仕切りの位置は、どうなっているだろうか?
(仕切りの右側に雨粒が入るか、左側に入るかは、各区画の面積に比例、つまり、各区画に入っている水の量に比例する)
答え ほとんど動いていないはず。
265:132人目の素数さん
19/12/26 22:38:05.18 YVgI+UyN.net
そう?
どっちかにビチャってよっちゃってそうだけど。
266:132人目の素数さん
2019/12/2
267:6(木) 22:39:20.70 ID:1POxvSt7.net
268:132人目の素数さん
19/12/26 23:26:25.52 YVgI+UyN.net
30°
269:132人目の素数さん
19/12/27 00:18:11.16 HDIPEZAp.net
>>253
じゃ、こんなのはどう?
交換してもらった名刺が1000枚ある。五十音順に並べることにした。
100枚ほど並べ終わった時、何を思ったか、自分の名刺も加えてみた。
上から30%位の位置に挿入された。
さて、1000枚全てを並べ終わったとき、自分の名刺は、どの辺りにあるか?
270:132人目の素数さん
19/12/27 00:39:47.46 E3VxHfur.net
>>254
どうするのかね?
271:132人目の素数さん
19/12/27 00:48:43.03 m7wze3DH.net
>>256
それならいけるのかな?
しかし本問は最初の発生した偏りが系に正帰還して偏りを拡大させていくモデルだからなぁ。
例えば今回は(a,b)の状態から始めてa+b-1回目の時点では
Aが起こる回数がa回以上の確率
=Bが起こる確率がb回以上の確率
=1/2
という事が成り立つようだけど、この状態は本当にずっとたもたれるのかな?
例えばna+nb-1回やったとき相変わらず
Aが起こる回数がna回以上の確率
=Bが起こる確率がnb回以上の確率
=1/2
という関係はたもたれ続けるのかな?
yesのような、noのような‥‥
272:132人目の素数さん
19/12/27 01:06:52.23 m7wze3DH.net
今(a,b,n)=(2,1,2)でやってみたらわずかにaが4回以上起こる確率の方がbが2回以上起こる確率を上回ってる気がする。
手計算だから間違ってるかもだけど。
やっぱり偏りは拡大していく気もする。
273:132人目の素数さん
19/12/27 04:08:56.09 FqqlMh9P.net
正弦定理から
sine(?) = sine(36°)/sine(72°)*sine(84°- ?)
これをコンピュータで解いて?=30
274:132人目の素数さん
19/12/27 04:35:00 FqqlMh9P.net
>>260
角度を計算するRのスクリプト
foo <- function(x=36,y=24){
sine <- function(x) sin(x/180*pi)
f <- function(z) sine(z) - sine(x)/sine((180-x)/2)* sine(180-y-(180-x)/2-z)
round(uniroot(f,c(0,180))$root,3)
}
> foo(36,24)
[1] 30
275:132人目の素数さん
19/12/27 07:56:21.74 FqqlMh9P.net
>>254
複素平面で考えた方が楽かな?
276:132人目の素数さん
19/12/27 13:18:10.46 oS4+axdd.net
複素数平面でもベクトルでも三角比でも初等幾何で解く事にこだわらなければ似たり寄ったり。
でも初等幾何のテクニック勉強するのってどっかで見切りつけないとキリないんだよな。
277:132人目の素数さん
19/12/28 03:32:40.72 CpgIRcQ2.net
URLリンク(i.imgur.com)
278:イナ
19/12/28 04:12:27.40 GFHwIJTI.net
前>>245記憶にございません。俺の脳が勝手に携帯のボタンを押したんだ。意味わかんない。メネラウスとかのほうがいい。
 ̄ ̄]/\______∩∩_
____/\/ ,,、、(___))|
 ̄ ̄\/ 彡-_-ミっ / |
 ̄ ̄|\_U,~⌒ヽ、| |
□ | ∥ ̄ ̄U~~U | / )
____| ∥ □ ∥ |/ /|
_____`∥______∥ノ / |
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄∥ |
□ □ □ ∥ /
__________________∥//
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄_/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__
279:イナ ◆/7jUdUKiSM
19/12/28 04:44:49 GFHwIJTI.net
前>>265
>>254ありきたりな正弦定理はおもしろくないんでこのスレじゃNG。
いよいよメネラウスやっとくれ。
280:イナ
19/12/28 05:01:41.28 GFHwIJTI.net
前>>266
84-?=24+?
2?=84-24
?=60/2=30
疑う余地はない。
その前の二等辺三角形をメネラウスでお願いし
281:ます。
282:132人目の素数さん
19/12/28 08:39:20 th9xRFNv.net
>>266
俺はありきたりな偏角とプログラムを使うとこういうのが図示計算できて楽しめた。
URLリンク(i.imgur.com)
283:132人目の素数さん
19/12/28 08:44:27 2Pab3NM0.net
>>263
パターンは絞れるんじゃない?
正三角形を作るとか
284:132人目の素数さん
19/12/28 08:56:38.74 th9xRFNv.net
>>264
0.851606
285:132人目の素数さん
19/12/28 09:04:29.72 prr1M5RM.net
>>269
それが数学を勉強していくのに不可避ならやるんだけど、少なくともこの手の問題は解答するためのアルゴリズムも見つかってるので数学の研究のメインに上がってる事もないし。
ソロバンみたいなもの。
勉強して無駄とは言わないが、あまり不必要に難しすぎるやつやってもしょうがない。
286:132人目の素数さん
19/12/28 10:46:59.12 7xarnjVq.net
>>264
ω=exp(2π/3i)、log(x)を0以下の実数を除くところで定義するとして
Σω^n/n=-1/ωlog(1-ω)‥‥①
Σω^(2n)/n=-1/ω^2lig(1-ω^2)‥‥②
(ω①-②)÷(1-ω)=答え
287:イナ
19/12/28 12:59:15.34 GFHwIJTI.net
前>>267
>>254題意の図を内角が左上A72°左下B96°右下C78°右上D84°となるよう4頂点を決め、ABの中点をE、ADの延長線とBCの延長線の交点をF、ACとBDの交点をGとし、BAの延長線とCDの延長線の交点をH、AE=BE=1、BG=xとすると、
ADは一辺ABの正五角形の対角線だから1+√5
AD=BD=BC=1+√5
Aを起点にメネラウスの定理より、(AG/GC)(CB/BF)(DDA)=1―①
Bを起点にメネラウスの定理より、(BG/GD)(DA/AF)(FD/DB)=1―②
F(12°)を起点にメネラウスの定理より、―③
H(6°)を起点にメネラウスの定理より、―④
①②③④より、x=2
△ABGはAB=GBの二等辺三角形で∠BAG=∠BGA
84°-?=?+24°
2?=84°-24°=60°
∴?=30°
②と③が同じになったから④が必要で、これでできるだろう。正弦定理でもいいよ。x=2が言えれば。けどチェバとメネラウスだけで解けたらおもしろい。
288:イナ
19/12/28 13:46:27.37 GFHwIJTI.net
前>>273
AB=GBさえわかれば答えは出る。メネラウスと考えるのが自然。AE=BE=1として、AD=BD=BC=1+√5
実際に比がわからなくても△ABGは二等辺三角形になるしかない。時間なければx=2しかない。チェバとメネラウスで二等辺三角形でいい。
∠BAG=∠BGA
84°-?=24°+?
2?=84°-24°
?=30°あってる。
289:イナ
19/12/31 05:45:20.19 DdtTHOH4.net
前>>274わかったからこっちにも書く。
>>254別解。
折れ線の左上をA、右上をB、左下をCとすると、
AB=BC、∠ABC=36°
AB=BC=CD、∠BCD=36°となるDをとり、
AB=BC=CD=DE、∠CDE=36°となるEをとると、
AB=BC=CD=DE=EA、∠DEA=36°となる。
∠BAEの二等分線を引くとCDと直交し、折れ線の端に達するから、
?=90°-(36°+24°)
=30°
∴示された。
290:132人目の素数さん
19/12/31 07:46:34.16 rv0BC6P6.net
東京で高さ10mの垂直な梯子に上ると、地上にいる人より何秒早く初日の出を見ることができるか。
【条件】
地球を半径6400kmの完全な球体とする。
ビルなどの建物はない。
東京を北緯35度とする。
自転軸は23.4度傾いている。
公転による影響は無視する。
観測者の身長は無視する。
1日を23時間56分4秒とする。
291:132人目の素数さん
19/12/31 11:39:22.11 NB4wsDH9.net
>>276
地球半径をRとすると、高さhのところから地�
292:ス線を見下ろす 角度θは、地心と観測者と地平線を結ぶ直角三角形を作れば tanθ=√(2hR-h^2)/R h/R<<1, θ<<1で近似すれば θ≒√(2h/R) ラジアンを秒角に直せば、 θ(秒角)≒2.06×10^5√ (2h/R) h=10m,R=6.4×10^6mを代入して計算すると θ≒364秒角 (ちなみに、地平線までの距離が√(2hR)≒3600√h メートル ってのは、豆知識) あとは、しちめんどくさいので、だいたいで。 太陽の赤緯は無視して、緯度φでの、相当する日周運動の 回転角だけ求めると、 θ/cosφ ≒387秒角 地球の自転の角速度は360度/日=15度/時=15秒角/秒 で近似できるので、 387/15≒26秒だけ早く初日の出を拝める。
293:132人目の素数さん
19/12/31 11:41:59.06 NB4wsDH9.net
>>277
あ、間違えた。φに23.4度を入れちゃってたわ。 35度で計算
しなおすと、
θ/cosφ≒444秒角なので、
444/15=30秒だけ早く初日の出を拝める。
294:イナ
19/12/31 14:41:15.29 DdtTHOH4.net
前>>275
30秒で10mは登れると思うけど、木登りするよりは地上で30秒待って拝むかな。
狼男が何人いるかが気になる。だれか明確な答えを出してほしい。スレは20ぐらいで埋もれてる。
三日目終わって村人全員死んだらしい。毎夜12時に集まって狼男をつきとめようとしたみたいなんやが衆人監視のもとやと襲いよらへんらしい。
でも変身したらわかるはずやし、俺は村人の4人に1人が狼男や思うんやが、正解はなんなのか、だれかが出した3人という答えはなんなのか、解答する村人が俺以外死んだのかおらんなってしもて、今なぞのまま年が暮れようとしとります。
295:132人目の素数さん
19/12/31 15:42:46 SaGC8i82.net
月5,000円で授業や問題集でわからない問題を当方に質問し放題の教室をやっています。
●全国どこにお住まいでもご対応いたします!
●振込、アマギフ払い可能!(アマギフ払いだとコードをメールで送信するだけです。よって、名前バレ・親バレの心配がありません。)
●すぐにご対応いたします!(授業で当てられて翌日に答える必要がある場合などです。)
●模擬試験のネタバレの答案作成可能!(模擬試験の成績が推薦に影響する場合などに有効です。)
●1ヶ月無料!ご満足いただけない場合は、その月で解約可能です。
Yahoo知恵袋などの質問サイトもありますが、間違った回答が来たり、回答が来てわかりにくいところがあったときにすぐ聞けなかったり、返信がいつ来るかわからなかったりするなど多くの問題があります。
私は、国立理系、上位私立文系合格実績があります。
pyosimu@choco.laまでご連絡ください。よろしくお願いします。
296:
20/01/02 04:05:49.59 IJJUUF2Y.net
前>>279
>>253せやろ。俺も何べんか言うたんやで。Bのほうにビチャッて寄ってまうやんなぁ。
297:132人目の素数さん
20/01/02 08:16:02.11 9Uqz14kt.net
やっと>>223できた。
めちゃめちゃ難しい解答になったけど。
今日帰ったらできた解答あげます。
298:132人目の素数さん
20/01/02 10:12:05.15 o7xDKcDw.net
災害が発生していたるところに重症被災者がいる。消防署から出動して救急センターに患者を搬送する
消防署から救急センターへの距離は100km 救急車のガソリンは50L、患者を乗せない状態では燃費は10km/L、患者を乗せての燃費は5km/Lである
患者を救える地域の面積はいくらになるか?
299:
20/01/02 10:23:45.53 OBB1psO6.net
3Lあれば10km往復できるという意味?
300:
20/01/02 10:25:39.41 4tfWuOZN.net
いや違う。
消防署と救急救命センターは離れてるのか。
301:132人目の素数さん
20/01/02 11:11:31.37 U5AK8YkK.net
燃費が同じなら消防署と病院を焦点とする楕円内になる
ところをひねったわけね。
現実問題としてはガソリンの残量でも燃費が変わるけど。
302:132人目の素数さん
20/01/02 11:38:54.19 o7xDKcDw.net
>>286
そういうことです。
303:132人目の素数さん
20/01/02 11:42:20.76 o7xDKcDw.net
>>286
>ガソリンの残量でも燃費が変わる
どんな関係になるのでしょうか?
それが分かればそれを組み入れて計算してみたいので。
304:132人目の素数さん
20/01/02 12:02:49.81 o7xDKcDw.net
>>285
消防署から被災地に赴いてそこで被災者を収容して救急センターに送るという設定。
305:132人目の素数さん
20/01/02 12:41:20 o7xDKcDw.net
>>288
ちょっと、調べてみた
例えば、ガソリンタンクが60Lだとすると、レギュラーガソリンの1Lの重さは0.75kgなので、60Lが満タンになると45kg、半分の30Lだと22.5kgとなる。
その差22.5kgがどのくらい燃費が悪化するのか気になるところだが、実は満タンにした場合と半分にした場合とでは、0.84%ほどしか燃費は悪化しないのだ。
URLリンク(bestcarweb.jp)
306:132人目の素数さん
20/01/02 12:50:42.72 hdd+306f.net
カウンタックみたいに軽量本体+大容量タンク+ガソリンバラ撒きだと案外無視できないんでね
307:
20/01/02 12:53:17.79 75BuHvKa.net
>>289
理解しますた。
つまりa=100kmとして
極方程式
r/10+√(r^2+a^2-2arcosθ)/5≦50
を満たす領域の面積を求めよ。
ですな。
308:132人目の素数さん
20/01/02 13:35:14.30 o7xDKcDw.net
消防署を原点、被災地の座標を(x,y)として
√(x^2+y^2)/10 + √((x-100)^2+y^2)/5 ≦ 50
なのはわかるけど、
極形式は???
309:132人目の素数さん
20/01/02 14:33:35.44 o7xDKcDw.net
方程式 √(x^2+y^2)/10 + √((x-100)^2+y^2)/5 = 50をWolfram先生に解いてもらって
y=f(x)の形にして、積分して面積を求めると
> integrate(y,-100,700/3)$value*2
[1] 83693.05
1億回モンテカルロシミュレーション結果は
> k=1e8 ; mean(replicate(k,gc(runif(2,-Gas*FE1,Gas*FE1))))*(2*Gas*FE1)^2
[1] 83691.74
310:132人目の素数さん
20/01/02 16:04:45.98 U5AK8YkK.net
消防署から患者までの距離と患者から病院までの距離の2倍の和が、
消防署からたどり着ける最大距離に等しい地点の内側にあればいい。
なので、到達最大距離が病院までぎりぎり行ける程度だと、病院周
りのほぼ円形の領域をカバー(消防署からの距離はほぼ一定だから)。
到達最大距離が病院のはるかむこうまで行けるくらいあると、中間
点を中心にしたほぼ円形の領域をカバー(どっちの地点からの距離
もほぼ一定だから)。
最大到達距離が病院までの距離の2倍に等しい場合が一番円形から
はずれそう。
311:
20/01/02 17:05:21.21 Rnj9mFDn.net
wolfram先生に書いてもらうとほぼ円なのはわかる。
でも円じゃないよね?
多分。
312:イナ
20/01/02 19:08:08.94 IJJUUF2Y.net
前>>281
>>28
313:3なんで円なのかわからんな。牧草を食む山羊か? 杭につながれた。 救命救急は急がないかんのだろ。せやで速い計算以外はいらんだよ。可能性のみ考えよう。 救急車のガソリンは50L。めいいっぱい使うとして、行きが(50/3)Lで(500/3)㎞、現場から救急センターまでが(100/3)Lで(500/3)㎞の直線軌道。だれがそげなときに円形に迂回するもんか。二等辺三角形が描ける。 消防署と救急センターの中間地点は双方から50㎞の地点。その道から垂直に、ピタゴラスの定理により、√{(500/3)^2-50^2}㎞遠ざかった地点が救急できる最遠方地。 ∴救える面積=50×√{(500/3)^2-50^2} =50^2√{(100-9)/9} =2500√91/3 =7949.49335(k㎡) 0.01k㎡=1ヘクタールだから、79万4949ヘクタール救える。車道まで搬送してくれ。それが条件で。
314:132人目の素数さん
20/01/02 19:56:11.71 U5AK8YkK.net
>>296
ガソリン20リットルという条件でやってみそ。(消防署からの
最大到達距離が病院までの距離の2倍ってケース)
カスプができるから。
315:132人目の素数さん
20/01/03 00:42:42.99 WWRiI94b.net
>>298
やってみました。
URLリンク(i.imgur.com)
316:
20/01/03 01:06:05.99 FW913/Tp.net
前>>297
>>299まさに8000k㎡ぐらいじゃね? 80ヘクタール行くか行かないかぐらいじゃないかな?
317:
20/01/03 01:10:11.85 FW913/Tp.net
前>>300訂正。
80ヘクタール→80万ヘクタール
318: 【大吉】 【43円】
20/01/03 05:04:55 S7a9Iuic.net
>>289
ヒントギボン。
どうあがいても楕円積分になるorz。
319:132人目の素数さん
20/01/03 06:50:06.38 9SjLQpJv.net
一辺の長さが1の正方形が重ならずに7個入る最小の正方形の一辺の長さはいくらか
320:132人目の素数さん
20/01/03 07:19:37.42 WWRiI94b.net
>>302
すいません、確固たる正解すら持ってない自作問題なので何がヒントになるのかすらわかりません。
321:132人目の素数さん
20/01/03 11:21:51.29 WWRiI94b.net
>>298
ガソリン量を10から30まで救えるエリアを描かせてみました。
URLリンク(i.imgur.com)
322:132人目の素数さん
20/01/03 12:11:23.26 WWRiI94b.net
50まで増やしてみた。
URLリンク(i.imgur.com)
323:132人目の素数さん
20/01/03 12:22:08.26 FJq0gSax.net
>>294
俺もwolfram先生の助けでやってみたけど(y^2に関する2次方程式になるから、それを解くだけ)
y = ± (1/3 sqrt(-9 x^2 + 2400 x - 10000 (2 sqrt(6 x + 2200) - 113)))
というグラフの内部。
-100≦x≦700/3で積分するとたしかに83693.046になるね。
グラフを描かせてみると、長半径500/3,短半径160で中心が (200/3,0 )にある楕円で極めて
よく近似できる(求める領域より若干膨らんでいるが)。この楕円の面積は83776で、誤差0.1%未満。
324:132人目の素数さん
20/01/03 12:24:29.45 FJq0gSax.net
>>305,306
乙です。
325:
20/01/03 13:04:55.11 /G0ULS+T.net
結局面積はどうあがいても完全楕円積分になる。
一般解は楕円関数使わないと表示できない。
パラメータに特殊な値を入れた場合特殊値が綺麗な値で出る事もあるだろうけど作者が適当な直で作ってみたという問題で偶然キレイな特殊値になる事は考えづらいね。
326:132人目の素数さん
20/01/03 13:09:36.78 WWRiI94b.net
>>296
ガソリン50Lで描画すると横径(消防署と病院を結ぶ方向) 360、 縦径347.5505の結果が返ってきたから、円じゃないね。
327:132人目の素数さん
20/01/03 13:53:16.17 FJq0gSax.net
>>309
とりあえず、カスプができる形(ガソリン20l)の場合には極座標形式で
r≦800/3{cosθ- 1/2)
と、きれいに書ける。こういう曲線って名前あるんだっけ?
面積も高校数学レベルで積分できて
∫[-π/3->π/3] (800/3)^2(cosθ-1)^2dθ=(800/3)^2(2π-3√3)
328:132人目の素数さん
20/01/03 13:59:28.22 FJq0gSax.net
>>311
写し間違えた、面積は
∫[-π/3->π/3] (1/2)(800/3)^2(cosθ-1)^2dθ=(1/8)(800/3)^2(2π-3√3)
329:
20/01/03 14:01:28.49 /G0ULS+T.net
>>309
それならパスカルの蝸牛曲線
URLリンク(ja.m.wikipedia.org)
330:132人目の素数さん
20/01/03 14:02:32.66 FJq0gSax.net
>>310
だから、楕円でよく近似できる。つ>>307
331:311
20/01/03 14:06:30.62 FJq0gSax.net
>>313
へー、パスカルのカタツムリかぁ。
lが負だから、内側のほうに対応するね。
ありがとう。
332:132人目の素数さん
20/01/03 14:40:00 Xx1MBzdP.net
>>313
か…かぎゅう曲線 (鼻ホジ)
333:132人目の素数さん
20/01/03 15:28:18.21 WWRiI94b.net
ガソリン20L曲線とパスカルの蝸牛を重ねてみた。
URLリンク(i.imgur.com)
334: 【大吉】
20/01/03 15:38:42 FW913/Tp.net
前>>301
>>303
3個のブロック直列で並べその両サイドに2個のブロックを並べると、
2個のブロックと3個のブロックの対角線はピタゴラスの定理により、
最小限√(3^2+2^2)=√13ないといけない。
一辺3の正方形より小さくはできない。
底辺2高さ3の平行四辺形が一辺3の正方形に入らないのと同じぐらいできない。
∴最小の一辺の長さは3
335:132人目の素数さん
20/01/03 15:54:31 CTEYwEEV.net
3っぽいのはともかく、↑って解答になってるの?
336:132人目の素数さん
20/01/03 16:22:52.20 WWRiI94b.net
ガソリン20 L のときは
√(x^2+y^2)/10 + √((x-100)^2+y^2)/5 = 20から x=rcosθ y=rcosθとして
r について r/10 + 1/5 sqrt((r cos(θ) - 100)^2 + r^2 sin^2(θ)) = 20 を解けば
r = 400/3 (2 cos(θ) - 1)
んで、パスカルの蝸牛になるのか。
ようやく、理解できました。
337:
20/01/03 17:17:21.61 /G0ULS+T.net
イナの解答で数学の世界で通用するものがでた事はない。
338:
20/01/03 17:29:56.03 Ir9tB0mI.net
wikiによると>>303の答えは3みたいだけどまぁ簡単な面白い証明があるのかないのかはどうなんだろうねぇ?
URLリンク(en.m.wikipedia.org)
339:132人目の素数さん
20/01/03 17:33:59.69 Xx1MBzdP.net
>>322
( ゚∀゚)つURLリンク(www2.stetson.edu)
340:
20/01/03 17:52:08.58 FW913/Tp.net
>>303は前>>318で俺が証明した。
341:
20/01/03 18:06:57.30 /G0ULS+T.net
相変わらず馬鹿だなぁ
342:哀れな素人
20/01/03 19:04:23.94 9TDiWl+d.net
>>303の答え=3
なぜなら、なるべく狭い範囲に、重ならないように、並べるためには、
少なくともどこか1箇所は、縦方向(あるいは横方向)に、
3個並べなければならないが、その場合、どうしても、
1辺の長さは3になってしまうから。
あるいは、なるべく狭い範囲に、重ならないように、並べるためには、
円に近いような並べ方をするしかないが、
その場合、>>318のような並べ方をするしかなく、
その場合、辺の長さをxとすると、3≦x≦5√2/2
343:311
20/01/03 19:30:33.87 FJq0gSax.net
>>283
っちゅうことで、問題をこう変えてはいかが?
砂漠の基地Aからもうひとつの基地Bに向かって出かけた戦車がGPSの故障で
進路を見失ってさまよった挙げ句にガ�
344:X欠で止まってしまった。別の戦車で 基地Aからこの戦車へ救助に向かい、燃料を分け与えて一緒に基地Bに行く ことになった。しかし、戦車にはAB間をちょうど往復できるだけしか燃料 は積めない。AB間の距離をRとして、Aを原点とする極座標形式で救出可能な 領域を示し、その面積をRを使って表しなさい。 ただし、戦車の燃費はいずれも同じものとする。
345:311
20/01/03 19:32:09.44 FJq0gSax.net
>>316
かぎゅう曲線で読みはあってる。
346:
20/01/03 19:51:11.31 /G0ULS+T.net
>>223
以下を通じて確率過程(Xi,Yi)は
P((X(i+1)Y(i+1))=(c,d) | X0,Y0,‥,Xi=a,Yi=b)
=P(X(i+1),Y(i+1)=(c,d) | (Xi,Yi)=(a,b))
=a/(a+b) if (c,d)=(a+1,b)
. b/(c+d) if (c,d)=(a,b+1)
. 0 otherwise
をみたす離散Markov過程とする。
F(a1,‥,ap; b1,‥,bq;x)はgeneralised hypergeometric function とする。(Fの下付き文字は略する。)
(a~b)はa,a+1,‥,bの赤とする。例えば(3~5)=3・4・5=60である。
補題1
任意のa,b,m,n,iに対し
P(∃j (Xj,Yj)=(a+m,b+n) | (Xi,Yi)=(a,b))
= C[m+n,m](a~b+m-1)(b~b+n-1)/(a+b~a+b-1)
(∵) 容易。□
補題2
任意のa,b,cに対し
P(∀i Xi<c | (X0,Y0)=(a,b)) = 0
(∵) 補題1より得られる。□
補題3
任意のa,b,n≧0に対し
P(∃i Xi<2a, Yi=2b | (X0,Y0)=(a,b))
=Σ[n≧0]P(∃i (Xi,Yi)=(2a-1,b+n) X(i+1)=Xi+1 | (X0,Y0)=(a,b))
(∵) 補題2による。□
主張4
任意のa,bに対し
P(∃i Xi<2a, Yi=2b | (X0,Y0)=(a,b))
=(a+b-1)!(a~2a-1)(b~2b-1)/(a!b!(a+b~2a+2b-1)
. a F(2b, a+b, 1; b+1,2a+2b; 1)
(∵) 補題3 の右辺を整理するだけである。□
定理5
任意のa,bに対し
P(∃i Xi<2a, Yi=2b | (X0,Y0)=(a,b))
=P(∃i Xi=2a, Yi<2b | (X0,Y0)=(a,b))
=1/2
(∵) 主張4により
a F(2b, a+b, 1; b+1,2a+2b; 1)
=b F(2a, a+b, 1; a+1,2a+2b; 1)
を示せば十分である。
ここでgeneralized hrpergeometric functionの積分表示とEulerの公式により
a F(2b, a+b, 1; b+1,2a+2b; 1)
= a Γ(b+1)/(Γ(1)Γ(b)) ∫t^(1-1)(1-t)^(b-1)F(2b,a+b;2a+2b;t)dr
=ab ∫(1-t)^(b-1)F(2b,a+b; 2a+2b;t)dt
=ab ∫(1-t)^(b-1)(1-t)^(a-b)F(2a,a+b; 2a+2b;t)dt
と変形されるが、この変形の逆を辿って主張は得られる。□
URLリンク(en.m.wikipedia.org)
URLリンク(en.m.wikipedia.org)
347:132人目の素数さん
20/01/03 20:27:52.22 WWRiI94b.net
>>328
R使って書いてみた。
URLリンク(i.imgur.com)
348:132人目の素数さん
20/01/03 20:28:36.69 WWRiI94b.net
>>327
ありがとうございます。やってみます。
349:311
20/01/03 20:58:56.58 FJq0gSax.net
戦車を問題に出すと、日教組から文句が出るかもね。
連中は、ぐんくつの音がどうのとかで、幻聴が聞こえて大変らしいw
350:132人目の素数さん
20/01/03 21:15:49.93 WWRiI94b.net
>>327
r <= 4/3R(2cos(θ)-1)
8/9 (2 π - 3 √3) R^2
351:132人目の素数さん
20/01/03 21:17:14.27 R+svt1Sm.net
日帝打倒革命軍の戦車ならきれいな戦車だから問題ないんでね
352:132人目の素数さん
20/01/03 21:39:33.47 mOY35G5X.net
La+ @QiDUiNSkTzJpSff
0の0乗は1ですよ!
俺が知ってる中で唯一0だけから0以外を作り出す方法
午前0:53 2020年1月3日
353:132人目の素数さん
20/01/04 00:49:20.95 9B2dGZZ9.net
任意の自然数nに対し, 区間[0,4]で定義された関数f_n(x)を次のふたつによって定める
1. f_1(x) = x(x-3)²/4
2. f_{n+1}(x) = (-1)^{[n/3]+[(n+2)/3]} ・ f_1(f_n(x))
(ここで [
354:x] は x を超えない最大の整数) このとき, xの方程式 f_2020(x)=a が [0,4] に少なくとも1つの実根をもつための実数 a の条件を求めよ
355:132人目の素数さん
20/01/04 01:19:48.78 1gxiLzhY.net
解く気が全く起きない問題
356:イナ
20/01/04 02:29:22.87 9c3BmtC3.net
前>>324
>>303
6つにしたら3よりちっさなるかなぁ?
357:イナ
20/01/04 03:15:30.16 9c3BmtC3.net
前>>338
>>303
7つの正方形を並べた発想は面白い。けど対角線とか斜めの長さの意外な逆転現象とか面白い部分が見あたらない。
それとも面白さに気づいてないだけなのか。
まさか立方体におさめよという問題でもあるまいし。
5つにしたら一辺2√2の正方形におさまる。新しい発見があったらまた報告したいと思います。
2√2=2.82842712……<3
358:132人目の素数さん
20/01/04 05:39:04.15 OE5Ws6/k.net
>>335
{0}=1
359:イナ
20/01/04 08:11:11.37 9c3BmtC3.net
前>>339
>>303それとも一個一個微妙に角度を変えることで、わずかに3より小さくした一辺2.9いくつの正方形におさまるというのか。
360:132人目の素数さん
20/01/04 10:16:31.19 XZ9geCBY.net
以下の条件を満たす立方体と平面の組は存在するか:
立方体の各頂点と平面の距離が0,1,2, .., 7である
361:132人目の素数さん
20/01/04 10:34:38.61 p/18DjXS.net
>>335
0^x =0
x^0=1
0^0=1とした方が辻褄が合うことが多い
362:132人目の素数さん
20/01/04 10:40:27.17 73ePCfYz.net
問、1からnまでの自然数をランダムに並べ大きな桁の数を作るとき、平方数になるものはあるか。ただし、nは2以上とする。
例、n=2のとき、12と21は平方数ではない。
n=3のとき、123と132と213と231と312と123は平方数ではない。
n=12のとき、123456789101112や121110987654321などは平方数?
363:132人目の素数さん
20/01/04 10:47:05.56 OE5Ws6/k.net
>>344
つまんないかな
364:!omikuji !dama
20/01/04 10:54:59.73 nstnR/M9.net
頂点を(±1,±1,±1)としてよい。
この点をP±±±とする。
ベクトルnで
n・P---:P-++:P+-+:P--+=-7:5:3:-1
となるものが存在すれば条件をみたす図形は存在する。
n=(x,y,z)とすればこれは
-x-y-z:-x+y+z:x-y+z:x+y-z=-7:5:3:-1
は解を持つから求める図形は存在する。
365:132人目の素数さん
20/01/04 10:58:27.67 j99vM0NN.net
>>344
1からnまでのn個(n≧2)の自然数を順不同に並べてできる自然数の中に
平方数となるものはあるか?
ってことね。とりあえずn=4のときにもないな。
366:132人目の素数さん
20/01/04 11:11:46.75 XZ9geCBY.net
>>347
n=8のときは73256481,34857216,81432576,13527684,65318724かな
367:132人目の素数さん
20/01/04 11:18:53.90 XZ9geCBY.net
>>347
n=9: 30個の解[714653289,375468129,361874529,..]
n=10: [57926381041,24891057361,28710591364,75910168324,59710832164,27911048356,14102987536]
これ以降は制約が強くなるから減っていきそうだけど…
368:132人目の素数さん
20/01/04 14:40:52.17 p/18DjXS.net
>>349
n=9のとき 確かに30個ありました。
> apply(permn[re,],1, function(x) sum(beki*x))
[1] 139854276 152843769 157326849 215384976 245893761 254817369 326597184
[8] 361874529 375468129 382945761 385297641 412739856 523814769 529874361
[15] 537219684 549386721 587432169 589324176 597362481 615387249 627953481
[22] 653927184 672935481 697435281 714653289 735982641 743816529 842973156
[29] 847159236 923187456
369:132人目の素数さん
20/01/04 14:51:29.96 p/18DjXS.net
0から9までを並べかえると10桁の平方数は
> apply(permn[re,],1, function(x) sum(beki*x))
[1] 1026753849 1042385796 1098524736 1237069584 1248703569 1278563049 1285437609
[8] 1382054976 1436789025 1503267984 1532487609 1547320896 1643897025 1827049536
[15] 1927385604 1937408256 2076351489 2081549376 2170348569 2386517904 2431870596
[22] 2435718609 2571098436 2913408576 3015986724 3074258916 3082914576 3089247561
[29] 3094251876 3195867024 3285697041 3412078569 3416987025 3428570916 3528716409
[36] 3719048256 3791480625 3827401956 3928657041 3964087521 3975428601 3985270641
[43] 4307821956 4308215769 4369871025 4392508176 4580176329 4728350169 4730825961
[50] 4832057169 5102673489 5273809641 5739426081 5783146209 5803697124 5982403716
[57] 6095237184 6154873209 6457890321 6471398025 6597013284 6714983025 7042398561
[64] 7165283904 7285134609 7351862049 7362154809 7408561329 7680594321 7854036129
[71] 7935068241 7946831025 7984316025 8014367529 8125940736 8127563409 8135679204
[78] 8326197504 8391476025 8503421796 8967143025 9054283716 9351276804 9560732841
[85] 9614783025 9761835204 9814072356
87個ありました。
0で始まるのは9桁で記述のとおり。
370:132人目の素数さん
20/01/04 15:02:05 XZ9geCBY.net
>>344の答えはn>=11ではそのような数は存在しない
だろうと予想するけど何とも言えないし証明も思いつかない
371:132人目の素数さん
20/01/04 15:28:52.09 OE5Ws6/k.net
>>352
だからつまんない
思いついてもはぁそうですかとなりそうで
372:132人目の素数さん
20/01/04 17:52:04.39 91U8H0Lr.net
>>313
森口・宇田川・一松 「数学公式I」岩波全書221 (1956) p.286
第6.96図 リマソン(蝸牛線)
r = a・cosθ±b
373:132人目の素数さん
20/01/05 01:06:55.23 vbFMRky1.net
>>336
>>337
f_nの値域をW_nとしてW_2020を求めればよい。
漸化式からW_(n+1)とW_nには関係があり、値域が規則的に変化することがわかる。
実際、-1の指数の偶奇に気を付けてW_1, W_2, W_3,...と値域を調べると、[0,1]→[-1,0]→[0,4]→[0,1]→[-1,0]...とmod3で循環する。
2020≡1 (mod3)より、W_2020=[0,1]
ゆえに0≦a≦1
秒で草
374:132人目の素数さん
20/01/05 08:03:22.23 yUCMEt/y.net
三辺の長さが自然数の三角形だけを考える。「任意の6の倍数の面積をもつ三角形は必ず存在する」は真か偽か。
375:132人目の素数さん
20/01/05 08:26:31.79 WnBhQYbd.net
>>344
結局これべらぼうに難問なのでは
376:イナ
20/01/05 09:07:32.58 Cssr3MUc.net
前>>341
>>356
三辺が3:4:5の三角形は直角三角形でその面積は3・4(1/2)=6、すなわち命題は真。
377:イナ
20/01/05 09:18:47.13 Cssr3MUc.net
前>>358
>>356
三辺が6,8,10なら面積は24で、12を飛ばした。
面積が12になる三辺は存在しないかもしれない。
三辺が5:12:13なら面積は5・12(1/2)=30いや、存在しないはず。命題は偽。
378:132人目の素数さん
20/01/05 10:37:05.05 ni7Es8bO.net
(1、√3)を(3、2)に移す行列を求めよ。
また逆に、(3、2)を(1、√3)に移す行列を求めよ。
379:132人目の素数さん
20/01/05 11:12:08 WnBhQYbd.net
>>360
a = -3/23 - (16 sqrt(3))/23, b = 8/(3 sqrt(3) - 2), c = 1/(2 - 3 sqrt(3)), d = 3/23 + (16 sqrt(3))/23
とすると
[a,b;c,d][1;√3]=[3;2]
[a,b;c,d][3;2]=[1;√3]
の両方を満たせる
380:イナ ◆/7jUdUKiSM
20/01/05 11:28:10 Cssr3MUc.net
前>>359
>>360
(a b)(1 (a+b√3 (3
(c d) √3)= c+d√3)= 2)
a=3,b=0,c=2,d=0
(3 0)
(2 0)
(a b)(3 (3a+2b (1
(c d) 2)= 3c+2d)= √3)
a=1/3,b=0,c=√3/3,d=0
( 1/3 0)
(√3/3 0)
381:132人目の素数さん
20/01/05 15:12:12.32 k2hnKqS0.net
>>357
難問というだけだろうよ
382:132人目の素数さん
20/01/05 22:34:49.58 nuQeXmwr.net
平面に空いた半径1の円の穴を、辺の長さがaの正四面体が回転しながらくぐり抜けるときのaの最大値を求めよ。
383:イナ
20/01/06 01:27:32.79 o+CoSi8J.net
前>>362
>>364
一辺aの正四面体の体積は(1/3)(√3/4)a^2(√2)a/(√3)
一方で底辺(√3/4)a^2,稜線1,高さhの三角錘が4つが頭寄せで終結した形ともとれるので、
h=√[{√(1-a^2/4)}^2-(1/3)^2(a√3/2)^2]
(1/3)(√3/4)a^2(√2)a/(√3)=4・(√3/4)a^2√[{√(1-a^2/4)}^2-(1/3)^2(a√3/2)^2]
a^2=216-72a^2
a^2=216/73
a=√(216/73)
=√15768/73
=1.72014654……
384:364
20/01/06 02:02:04.23 s19KxsdE.net
>>365
不正解です。
ヒント:3次方程式の解の公式を使います。
385:イナ
20/01/06 05:24:00.89 o+CoSi8J.net
前>>365訂正。見えた!
a:√2=2:√3
a=2√2/√3
=2√6/3
=2・2.44949……/3
=4.89898……/3
=1.63299……(<1.72)さっきよりちっさなった。
386:364
20/01/06 05:52:38.80 s19KxsdE.net
>>367
残念ながら答えは遠のきました。
とりあえず紙工作で実験すれば2桁ぐらいの精度でわかると思います。
そして紙工作をいじってるうちに、くぐり抜けるための条件が閃くかも…
387:132人目の素数さん
20/01/06 05:55:47.47 vM9mJtxE.net
平面上に有限個の点があり、どの3点も同一直線上にない。
各点には少なくとも1本の線分がついていて、他の点と結ばれている。
このとき、「2本の交差する線分ABとCDがあれば、その2本を取り除き、線分ACとBDで置き換える」ことにする。
「」内の操作を無限に行うことは可能か?
388:132人目の素数さん
20/01/06 06:19:06.56 qpjRtnKS.net
交差が偶数個でなおかつ消失が奇数個ずつである時有限となる。
それ以外は無限
389:哀れな素人
20/01/06 11:18:45.98 56tqCV8z.net
>>364
イナ氏の答えa=2√6/3 が正解のような気がするが。
回転しないでよいならa=√3の正四面体がくぐり抜けられるが、
題意を考えると、半径1の球�
390:ノ内接する正四面体の一辺の長さはいくらか、 という問題と同じだから、a=2√6/3となるはずだが。
391:132人目の素数さん
20/01/06 11:44:08.20 CEqlnY/2.net
回転しながらってそういう意味じゃないんじゃないか?
途中で適当に回転させてもよいから通り抜けられればOKって意味なんじゃ?
392:132人目の素数さん
20/01/06 11:45:33.13 KFIwF7Zl.net
>>359
三辺の長さが5,5,6や5,5,8なら面積は12
393:364
20/01/06 11:55:35.34 s19KxsdE.net
>>371
題意は、知恵の輪を解くようにありとあらゆる回転と移動を行って
厚さ0の平面に空いた単位円の穴をくぐり抜けるという意味です。
>回転しないでよいならa=√3の正四面体がくぐり抜けられるが、
平行移動のみでも√3は最大ではありません。
大前提として「回転を許す場合のaの最大値 ≧ 平行移動のみのaの最大値」
が成り立つことを考慮願います。
394:132人目の素数さん
20/01/06 13:21:17 g5QBq4Ak.net
勘で正四面体ABCDのAB,AC上のPQをAP=AQととるときの△DPQの外接円の半径の最小値の逆数。
395:132人目の素数さん
20/01/06 13:42:46 Bpkl9Cm1.net
>>364
これかな
URLリンク(tzamfirescu.tricube.de)
396:イナ
20/01/06 16:04:24.20 o+CoSi8J.net
前>>367
>>364問題にバーバトリックはこれを認めるとか、棒高跳びのようにバーに触れても絶対にセーフとか但し書きが要ると思う。
397:哀れな素人
20/01/06 16:33:07.70 56tqCV8z.net
>>374
とりあえずa=4√2/3の正四面体は平行移動だけで通り抜けられることは分った。
398:132人目の素数さん
20/01/06 16:39:23.32 TlFZt9uI.net
>>376
図でおながいします
399:132人目の素数さん
20/01/06 16:55:32.08 Bpkl9Cm1.net
>>379
URLリンク(ars.els-cdn.com)
400:イナ
20/01/06 17:16:55.96 o+CoSi8J.net
前>>377
>>364
一瞬回転止まるけど、ねじれの位置にある2辺以外の、長さaの4つの辺の真ん中が輪を通過するとき、正四面体はあっち側とこっち側とで半々になってる。
つまり一辺a/2の正方形が半径1の円にちょうどおさまるときがaは最大。
(a/2)√2=2
∴a=2√2=2.82842712……
但し、バーバトリックを認めないなら、回転中の正四面体が円内で詰まる可能性がある。
401:哀れな素人
20/01/06 17:44:50.78 56tqCV8z.net
>>364の答えは、たぶんa=2である(笑
円の直径に正四面体の底辺の一辺を合わせる。
そのとき正四面体の底辺の他の二辺は円の直径と
それぞれ60°の角度で接している。
その状態のまま、その接している2点の弦を中心にして回転させると、
通り抜けられる、たぶん(笑
402:364
20/01/06 17:47:28.51 s19KxsdE.net
>>375
その勘は正しい!
>>376
の文献にその証明が載っている。
>>378
平行移動のみの場合は4√2/3よりもうちょっと大きくできる。
>>381
それはさすがに大きすぎて、ひねることすらできない。
もっと小さきくするとひねったり回転させたりできて、はずせるようになる。
403:イナ
20/01/06 19:30:40.13 o+CoSi8J.net
前>>381
>>383でもa=2√2で高速回転してるよ。
どうやって入ったかは微妙だけど、正四面体の真ん中で円を跨いで回転してんだよ。入ったんだから出られるでしょ。
a=2√2より小さくなれば通れるの当たり前じゃん。
じゃあ逆にそれ、回転してんの? 実際は回転できないんじゃないの?
ねじりながら通ったらそれでいいってこと?
404:132人目の素数さん
20/01/06 19:59:10.76 yym51Tg7.net
>>363
n=11 の 39916800通りの順列の中には平方数はなかった。
405:132人目の素数さん
20/01/06 20:10:41.10 Bpkl9Cm1.net
>>385
ちなみに
n=12の時もないがn=13の時はあった(58911124131067321等)
どうやら>>352の予想は外れたようだ
406:132人目の素数さん
20/01/06 20:36:13.69 TlFZt9uI.net
>>380
これで通り抜けられるのかイメージできないんですが。
407:132人目の素数さん
20/01/06 20:38:04.60 yym51Tg7.net
>>386
お疲れ様です。
うちのパソコンと俺のプログラム技術では11までが限度だった。
408:132人目の素数さん
20/01/06 21:02:00.19 Bpkl9Cm1.net
>>388
こっちもこれ以上のnでは無理だ
誰かプログラミング上手い人にやってもらいたいな
409:イナ
20/01/06 21:55:05.57 o+CoSi8J.net
前>>384
>>364
正四面体の1つの頂点Aが円周上をちょうど通過するとき、BC上のB寄り1:2の地点とCD上のC寄り1:2の地点が円に触れることがあるんじゃないか。そのとき円内にちょうどある正四面体の断面は二等辺三角形で、2辺がa√7/3,底辺がa√3/3だからピタゴラスの定理により、
(a√3/6)^2+[1+√{1-(a√3/6)^2}]^2=(a√7/3)^2
a^2/12+(1+a√11/12)^2=7a^2/9
12a^2+(12+a√11)^2=16・7a^2
12a^2+144+24a√11+11a^2=112a^2
89a^2-24a√11-144=0
a=12√11+√(144・100)/89
=(12√11+120)/89
=1.79549997……
超えんかぁ。やっぱりa=2が最大か。
2<a<2√2を満たすaがあると思うんだけど。
410:イナ
20/01/06 22:23:24.99 o+CoSi8J.net
前>>390
>>380この絵いいね。
a=2√2だときっつきつだけど、2√2よりちょっと小さいaで、2より大きくても通るんじゃないかと。
のれんの竿の長さは間口よりも確実に長い。
でも女将は難なくのれんを出す。
2<a<2√2を満たすaがあるはず。
411:132人目の素数さん
20/01/06 22:42:23.69 Bpkl9Cm1.net
>>391
>>376の結果的にa=1.791...だからこれを超えちゃうのはまずい
412:132人目の素数さん
20/01/06 22:46:53.81 Bpkl9Cm1.net
>>392
ごめんa=2.233だった
413:イナ
20/01/06 22:59:13.05 o+CoSi8J.net
前>>391
問題>>364
>>376
500キロバイト超えるダウンロードしたけど白紙6枚で、縮小したけどやっぱり白紙の長方形が6枚あるだけしか見えない。
a=2.33ぐらいなら、知恵の輪のように通過しうる妥当な最大値かな、という気がする。
414:132人目の素数さん
20/01/06 23:13:58.38 Bpkl9Cm1.net
>>394
論文の著者タイトル等は以下の通りなのでググるなりなんなり
J. Itoh, Y. Tanoue, T. Zamfirescu, Tetrahedra passing through a
circular or square hole, Rendiconti del Circolo Matematico di Palermo,
Suppl. 77 (2006), 349-354.
415:364
20/01/06 23:14:36.08 s19KxsdE.net
>>375 が解法の本質をついているので、その方針で計算を示します。
正四面体ABCDの辺BCと辺BDをt:1-tに内分する点をそれそれP,Qとし、
三角形APQ (辺の長さはAP=AQ=a√(1-t+t^2), PQ=at) が単位円に内接するときの
三辺の長さと内接円半径の関係式を求めると
a=√(4-4t+3t^2)/(1-t+t^2)
となる。そしてこの右辺をf(t)と置いてf(t)の0<t<1での最大値を計算する。
f'(t)=0の分子の方程式3t^3-6t^2+7t-2=0をカルダノの公式で解くと
t_0= (2 + (-4+√43)^(1/3) - (4+√43)^(1/3))/3 = 0.39125971029558…
であり、このときの極値は
f(t_0)= (√3/9)√(38 + (277217+41796√43)^(1/3) + (277217-41796√43)^(1/3))
= 2.23311138619632… (これは9x^6-38x^4+9x^2-216=0の正の根でありaの最大値�
416:ニなる) a=f(t_0)のとき点A,点P,点Qは単位円にギリギリ内接し、 PQを軸にして正四面体を回転させれば点Aを点B側にくぐらせることができ、 この手順を2回繰り返して単位円を通過させられる。 f(t_0)よりもaが大きいと正四面体はどうやっても1つの頂点しか単位円をくぐらない。 詳細な証明は >>376 の文献にあるので、腑に落ちない部分は補完してください。 また http://www.alg.cei.uec.ac.jp/itohiro/Games/090303/090303-08.pdf にこの問題の日本語サーベイがあって、答えを抽出すると全く同じ値 (aの最大値) = 2/γ(3,B_2) = 1/r (rは216x^6-9x^4+38x^2-9=0の(0,1)区間の根) = 2.23311138619632… になります。 この問題の類題は東大入試で複数回(1988年,1990年)出題されているそうです。
417:イナ
20/01/06 23:33:45.60 o+CoSi8J.net
前>>394
>>364
答えだけわかってもだめだよね。
a=2√2みたいな確固たる値が示せないと。式だよ、式。半径1の円を通過する正四面体の断面が二等辺三角形のとき、斜辺は2より小さいけど、
a√7/3=2としたら、
a=6√7/7=2.264565……
2.23~√5あたりにありそうではある。
418:132人目の素数さん
20/01/06 23:38:26.39 XiX60q02.net
wolfram大先生に答えだけは教えてもらえてたんだけどね。
URLリンク(www.wolframalpha.com)
証明がいいのが思いつかんかったな。
419:132人目の素数さん
20/01/07 00:17:46.04 uysOw5yp.net
>>369
ヒントおながいします。
420:
20/01/07 00:29:16.42 +rGyGxy4.net
前>>397
>>364
正四面体の頂点Aが半径1の円の円周を通過するとき、BCをt:1-tに分ける点とCDを1-tに分ける点がちょうど円周に接するとすると、
半径1の円を△BCDのうち点Cだけが先に通過したとして、頭を出している△BCDの面は、
2辺がat,at√3で斜辺が(1-t)aだからピタゴラスの定理により、
a^2t^2+3a^2t^2=(1-t)^2a^2
4a^2t^2=(1-t)^2a^2
4t^2=1-2t+t^2
3t^2+2t-1=0
(3t-1)(t+1)=0
t=1/3
断面は2辺がa√7/3,底辺がa√3/3の二等辺三角形で、半径1の円内にちょうどおさまる。ピタゴラスの定理により、解けると思ったんだけど。
a=2.23……になるみたいなんだけど。
421:132人目の素数さん
20/01/07 00:43:29 JXYplJLU.net
1988年はあの正四面体の正射影のやつか
422:132人目の素数さん
20/01/07 02:20:57.85 iiuZP5bH.net
1から9までの自然数を並べ9桁の数を作ると9!=362880通り
その数字を小さい順に並べると10万個めにあたる数字はいくつか?
パソコン使うと解けるけど、手作業だとどうやるんだろ?
423:イナ
20/01/07 02:39:22.15 +rGyGxy4.net
前>>400
>>401たしか何回も反芻して脳内にα波だかドーパミンだかをたくさん出させて俺を押し上げてくれたやつだ。
424:132人目の素数さん
20/01/07 06:34:33.67 Qgzj/uib.net
>>402
1□□□□□□□□→40320通り
2□□□□□□□□→40320通り
31□□□□□□□→5040通り
32□□□□□□□→5040通り
34□□□□□□□→5040通り
351□□□□□□→720通り
352□□□□□□→720通り
354□□□□□□→720通り
356□□□□□□→720通り
357□□□□□□→720通り
3581□□□□□→120通り
3582□□□□□→120通り
3584□□□□□→120通り
3586□□□□□→120通り
3587□□□□□→120通り
35891□□□□→24通り
358921□□□→6通り
358924□□□→6通り
3589241□□→2通り
3589246□□→2通り、計10万通り
答、358926471
425:132人目の素数さん
20/01/07 07:17:17.60 iiuZP5bH.net
>>404
お見事です。
ありがとうございました。
426:132人目の素数さん
20/01/07 09:11:37.32 nc6rRYgZ.net
>>399
AB+CDとAC+BDの大小関係を調べる
427:132人目の素数さん
20/01/07 09:24:42.49 Tgq0BG0Z.net
>>406
交点をXとして
AX+XC>AC, BX+XD>BD
だから
AB+CD>AC+BD
これだけか‥‥orz
428:132人目の素数さん
20/01/07 14:49:14.00 iNY/Lj/P.net
>>344
明らかかもだけどまだ誰も言及してなかったので一応。
1からnまでの整数の和は n(n+1)/2 だから、
1からnまでを全て一回ずつ並べてできる数の9による剰余は
0, (n≡0,8 mod9)
1, (n≡1,4,7 mod9)
3, (n≡2,6 mod9)
6 (n≡3,5 mod9)
となる。法9の平方剰余は 0,1,4,7 のみだから、適するnは ≡0,1,4,7,8 (mod9) のみであることがわかる。
これが十分条件かはわからないけど…
429:132人目の素数さん
20/01/07 20:26:33.37 VVqu10ev.net
>>398
やっと証明できた。
論文と同じかもしれないけど。
P,QをそれぞれAB,AC上を自由に動かしたときの△DPQの外接円の半径が最小となるときAP=AQ。
∵) 半径最小となる時の外接円の中心をO、半径をRとする。
微小変化でRが減少しないからABはOPと垂直である。
そうでなければABは中心O、半径Rの球に接していない。
よってPをどちらかに微小に動かして∠DPQを減少させることができる。
DQは変えてないから外接円の半径が減少して矛盾。
同様にACはOQと垂直である。
Pを通るOPに垂直な平面をα、Qを通るOQに垂直な平面をβとするとAはこのに平面の交線上にあり、P,Qそれぞれからこの公線への距離も等しい事からAP=AQである。□
からの>>396で完成。
430:イナ
20/01/07 21:58:29.83 +rGyGxy4.net
前>>403(前々>>400のつづき。やっとできた。ただの計算間違いだった模様。探していた2よりやや大きいaがみつかった)
>>364
正四面体の頂点Aが半径1の円の円周を通過するとき、BCをt:1-tに分ける点とCDをt:1-tに分ける点がちょうど円周に接するとき、
半径1の円を△BCDのうち点Cだけが先に通過したとして、頭を出している△BCDの面は、2辺がat,at√3で斜辺が(1-t)aだからピタゴラスの定理により、
a^2t^2+3a^2t^2=(1-t)^2a^2
4a^2t^2=(1-t)^2a^2
4t^2=1-2t+t^2
3t^2+2t-1=0
(3t-1)(t+1)=0
t>0より、t=1/3
正四面体を半径1の円で切った断面は二等辺三角形で、辺の長さはピタゴラスの定理により、
2辺が√{(a/6)^2+(a√3/2)^2}=a√7/3
底辺が√{(2a/3)^2-(a/3)}=a√3/3
二等辺三角形の高さはピタゴラスの定理により、
√{(a√7/3)^2-(a√3/6)^2}=√(7a^2/9-a^2/12)
=a√(28-3)/6
=5a/6
半径1の円の中心から二等辺三角形の底辺までの長さはピタゴラスの定理により、
√{1-(a√3/6)^2}
これに円の半径を足すと、二等辺三角形の高さになるから、
1+√{1-(a√3/6)^2}=5a/6
√{1-(a√3/6)^2}=5a/6-1
1-(a√3/6)^2=25a^2/36-5a/3+1
(a√3/6)^2+25a^2/36=5a/3
a≠0だから、
(1/12+25/36)a=5/3
(3+25)a=60
7a=15
a=15/7
=2.142857142857……
∴aの最大値は、のれんの竿が間口を超えるように、円の直径2を1/7だけ超える数。
431:132人目の素数さん
20/01/07 22:24:22.33 VVqu10ev.net
レフェリーの査読を受けた折り紙付の論文にケンカうるやつがいたんですよ~
432:イナ
20/01/07 23:20:12.70 +rGyGxy4.net
!_;'.,フゥ!ッ― __/__
/__'、、;_`/__/__/__/__
/_(`。(○⌒≡○゙__/__
/__○‥(`。'彡_/__/__
/__ι ̄)_`○_)ガイブノ
/__υ`υ_ι ̄)_/ロンブンノ
/__/__/__υ`υ_/_コエナド
433:
20/01/08 00:35:32.24 qrRgEAQj.net
'、、、`'__/__/__/__/__
(`。(○⌒≡○゙_/__/__
_○‥(`。'彡 _/__/__
__ι ̄)_`○_)/__/__
__υ`υ_ι ̄)_/__/__
__/__/__υ`υ_/__/__
ナルホド。前>>412前々>>410ツマリサンブンノイチジャナイtノァタイガァルッチューコトヵ!
434:132人目の素数さん
20/01/08 01:00:10.90 inpfJNh6.net
P,Qをそれぞれ稜AB,稜AC上で動かす。
t → t_0 のとき
AP = AQ = PQ = a・t → a・t_0
DP = DQ = a√(1-t+tt) → a・y
ここに y=0.87282555565530973 は 9y^6 -3y^4 +y^2 -3 =0 の正根.
ΔDPQ の高さh (底辺PQ~頂点D) は
h = a√[1-t+(3/4)tt] → a・z
ここに z=0.8506194274643943
435:12 は 48z^6 -24z^4 -5z^2 -2 =0 の正根. ΔDPQの外接円の半径R は R = DP・DQ/2h = a(1-t+tt)/{2√[1-t+(3/4)tt]} → a・x ∠DPQ = ∠DQP → 77.048042397987678゚ ∠PDQ → 25.903915204024644゚
436:イナ
20/01/08 03:19:13.40 qrRgEAQj.net
前>>413問題>>364
正弦定理かな。
二等辺三角形の底辺b=2Rsin60°=2R(√3/2)=R√3
余弦定理より、
cos60°={a^2t^2+a^2(1-t)^2-b^2}/2at・a(1-t)=1/2
{a^2t^2+a^2(1-t)^2-3R^2}/a^2t(1-t)=1
a^2t^2+a^2(1-t)^2-3R^2=a^2t(1-t)
a^2(2t^2-2t+1-t+t^2)=3R^2
a^2(3t^2-3t+1)=3R^2
a^2=R^2/(t^2-t+1/3)
a=R/√(t^2-t+1/3)
もしかしてR=1なんじゃないか。
a=1/√(t^2-t+1/3)
t=0→1のときのaの最大値すなわちf(t)=t^2-t+1/3の最小値。
f'(t)=2t-1=0
t=1/2でもそんなはずはない。
t=1/3のときa=15/7=2.142857……だけど、
t=1/2のときはa=16√3/13=2.13175484……だったかわずかに小さかったはず。計算間違いか?
437:132人目の素数さん
20/01/08 05:58:52.59 Nq01sIlL.net
【問1】2人が、6×10の形をした60片からなる板チョコで次のようなゲームをする。
先手は板チョコを溝に沿ってまっすぐ2つに切り、どちらか一方を食べる。
次に、後手は残りの板チョコを溝に沿ってまっすぐ2つに切り、どちらか一方を食べる。
これを繰り返し、最後の1個を相手に残した人が勝者となる。
完全な必勝法があるのは先手、後手のどちらか。
【問2】2人が、3×6×10の形をした180片からなる3次元の板(?)チョコで問1と同じゲームをする。完全な必勝法があるのは先手、後手のどちらか。
438:132人目の素数さん
20/01/08 07:23:13.00 49XZdy2H.net
正方形を作るように切る
439:132人目の素数さん
20/01/08 08:08:07 ksGmeRWR.net
各辺の長さ-1のnim sumが0になるように残す。
URLリンク(mathtrain.jp)
440:132人目の素数さん
20/01/08 09:39:31 6kJQ0oLN.net
>>416
2枚が同形になるように割るんだよね?
最後の一枚はどういう意味?
開始10:6
先手5:6
後手5:3
この後はどうなるの?
441:132人目の素数さん
20/01/08 09:41:32 3Nvp3XYY.net
同形にとは書いてない希ガス。
442:132人目の素数さん
20/01/08 09:51:31 6kJQ0oLN.net
問題は同形に割らなくてもいいルールなんだな。
443:132人目の素数さん
20/01/08 10:26:04 6kJQ0oLN.net
>>417
なるほど、正方形が残るように割って食べれば相手は正方形を残すことができないから負けることのなるのか
444:132人目の素数さん
20/01/08 13:21:23.45 rNgywfx4.net
>>416
板チョコが10×10の形だと、先手には必勝法はないんだなぁ。
>417の頭脳に感服。
445:132人目の素数さん
20/01/08 13:25:20.53 rNgywfx4.net
>>422
正方形が残されたら負け確定から類推すると三次元の場合は立方体が残されたら負け確定ってことか。
446:132人目の素数さん
20/01/08 13:28:44.28 PPN2rdw7.net
444は先手必勝
447:イナ
20/01/08 14:02:09.65 qrRgEAQj.net
前>>415
>>416
俺は先手必勝。
先手でも後手でも手には無数の見えない雑菌がついている。
板チョコを先手が素手で割ったらかならず先手のばい菌がチョコにつく。
最悪まずは先手をとる。
後手に素手で正方形に割らせないために、手をあっつあつの手袋であっためてチョコを溶かして、「溶かしましたすいません!」だ。ほかにとくに思いつかない。立体だと逆に負ける。一方の断面を正方形にすると、後手に立方体にされた場合でも正方形にして返せば勝てる。
448:132人目の素数さん
20/01/08 14:28:07.14 5C6B4ky0.net
URLリンク(www.instructables.com)
449:132人目の素数さん
20/01/08 14:38:02.41 8pIzC7x5.net
こっちはiphoneでも行ける
URLリンク(www.archimedes-lab.org)
450:イナ
20/01/09 04:02:04.08 RixsPfgs.net
前>>426
>>346
正四面体が円をくぐりぬけるときの、円周が接触する点が分ける辺の比が知りたいなぁ。
1:1のときa=2.13……
1:2のときa=2.14……
a=2.23……てことは、
辺の比1:uのuは、かなり大きくなるのかな?
思ったより端になるのかもしれん。
451:イナ
20/01/09 05:29:14.47 RixsPfgs.net
前>>429
半径1の円の円周が正四面体の頂点Aと、辺BCおよびCDをそれぞれt:1-tに分ける2点の計3点に触れて通過するときの二等辺三角形の辺の長さは、
t=1/2のとき、a/2,a√3/2,a√3/2
a=16√3/13=2.13……
t=1/3のとき、a√3/3,a√7/3,a√7/3
a=15/7=2.142857……
t=1/4のとき、
a=2.……(つづく)
452:132人目の素数さん
20/01/09 05:57:09.94 fyaA4Mc+.net
平面上に2003個の点があり、どの3点も同一直線上になく、どの4点も同一円周上にないとする。
このとき、次の条件をみたす円が存在することを証明せよ。
○円は3個の点を通る。
○円の外部に1000個の点がある。
○円の内部に1000個の点がある。
453:イナ
20/01/09 07:00:39.78 RixsPfgs.net
前>>430
半径1の円の円周が正四面体の頂点Aと、辺BCおよびCDをそれぞれt:1-tに分ける2点の計3点に触れて通過するときの二等辺三角形の辺の長さは、
t=1/2のときa/2,a√3/2,a√3/2
a=16√3/13=2.13175484……
t=1/eのときa√,a√,a√
a=
t=1/3のときa√3/3,a√7/3,a√7/3
a=15/7=2.142857……
t=1/πのときa√,a√,a√
a=
t=3/10のときa√,a√,a√
a=
t=1/4のときa√10/4,a√13/4,a√13/4
a=1.99407406……<2
aを最大にするtは、
1/4<t<1/3にあると考えられる。
454:132人目の素数さん
20/01/09 10:08:21.73 HQzS6/jG.net
>>431
Riemann球上で考えてよい。
球を三次元Euclid空間に埋め込んでx^2+y^2+z^2=1としてよい。
2点P,Qを任意に固定し残りをR1~R2001とし、さらに無限遠点をR0としておく。
P(1,0,0),Q(-1,0,0)としてよい。
△PQRiの外接円をCiとする。
さらにCIはこの準備にPの周りを回転していくとしてよい。
この時C1001が求められた条件をみたす。
455:132人目の素数さん
20/01/09 10:25:17.58 2lizhkoY.net
>>416
食べるチョコの無くなった方が負け、つまり最後の1個を食べた方が勝ちとすると必勝法はあるだろうか?
456:132人目の素数さん
20/01/09 10:34:05.90 ANCJ+Owj.net
>>434
そっちが本家のニムゲーム。
457:132人目の素数さん
20/01/09 10:37:43.11 vaPpsq0N.net
あ、でもこの設定でなら1x1でない限り割らないとダメというルール入れないとダメだな。
458:132人目の素数さん
20/01/09 11:31:48.27 yUxD+KNf.net
>>391
>>410
のれんに腕押しでござる.。。。
459:132人目の素数さん
20/01/09 14:30:32.51 rRnLkyt7.net
>>436
チョコを割って食えなくなると死ぬという設定でいいと思うw
460:イナ
20/01/09 17:49:24.81 RixsPfgs.net
前>>432訂正。問題>>364
正四面体ABCDの頂点Aが半径1の円に触れながら通過するとき、円は辺BC,辺CDをt:1-tに分ける点P,Qにも触れていて、
PQ=bとおくと、
正弦定理より、
b=2Rsin60°=2R(√3/2)=R√3
余弦定理より、
cos60°={a^2t^2+a^2(1-t)^2-b^2}/2at・a(1-t)=1/2
{a^2t^2+a^2(1-t)^2-3R^2}/a^2t(1-t)=1
a^2t^2+a^2(1-t)^2-3R^2=a^2t(1-t)
a^2(2t^2-2t+1-t+t^2)=3R^2
a^2(3t^2-3t+1)=3R^2
a^2=R^2/(t^2-t+1/3)
a=R/√(t^2-t+1/3)
R=1じゃなかった。
底辺は△BCDがある面。
半径1の円がある面じゃない。
t=1/2のときa=16√3/13=2.13175484……
16√3/13=R/√{(1/2)^2-1/2+1/3}
R=16√3{(1/2)^2-1/2+1/3}/13
=16√3(1/12)/13
=16(1/2)/13
=8/13
t=1/3のときa=15/7=2.142857……
15/7=R/√{(1/3)^2-1/3+1/3}
R=15√{(1/3)^2-1/3+1/3}/7
=15(1/3)/7
=5/7
t=3/10のときa=2.2……これ2.2超えるかなぁ。あまり期待してない。知恵の輪が締まってる感じがないもんね。
461:イナ
20/01/09 20:58:52.16 RixsPfgs.net
前>>439問題>>364
a=b/√(3t^2-3t+1)
t=1/2のときb=a/2,a=15/7=2.13175484……
t=1/√7のときb=a√{(10-3√7)/7},a=─
t=1/eのときb=a√(3/e^2-3e+1),a=─
t=1/3のときb=a√3/3,a=16√3/13=2.142857……
t=1/4のときa=4√42/13=1.99407406……<2
462:イナ
20/01/09 21:04:26.63 RixsPfgs.net
前>>440訂正。問題>>364
a=b/√(3t^2-3t+1)
t=1/2のときb=a/2,a=16√3/13=2.13175484……
t=1/√7のときb=a√{(10-3√7)/7},a=─
t=1/eのときb=a√(3/e^2-3e+1),a=─
t=1/3のときb=a√3/3,a=15/7=2.142857……
t=1/4のときa=4√42/13=1.99407406……<2
463:132人目の素数さん
20/01/09 23:48:50.84 rRnLkyt7.net
>>435
ここにオンラインのニムゲームがあった。
URLリンク(www.archimedes-lab.org)
これは後手必勝の配置だから、先手だと必ずコンピュータに負けると思う。