面白い問題おしえて~な 30問目at MATH
面白い問題おしえて~な 30問目 - 暇つぶし2ch150:132人目の素数さん
19/12/03 19:03:18.66 PHS8a67O.net
証明に現れる還元を全て列挙する。
コレらが還元になっている事は後で示す。
⑦以外は全て強還元である。
A~Gの図の定義も兼ねている。
①A|B (初手実行)
ーー  | ㊀ー
㊀ーー | ー㊀ー
②B|C,D(初手実行)
    | ◯   
㊀ー  | ー㊀  ㊀㊀
 ㊀ー | ー㊀ー、 ー㊀
③C|E(初手実行)
ー   | ー◯  
㊀㊀  | ㊀ー◯
④E|B(終端優先)
ー ◯  | ㊀◯  
㊀ー◯ | ー㊀◯
⑤D|F,G(初手実行)
    |  ◯
㊀㊀  | ㊀ー◯ ㊀㊀◯
  ㊀ |   ㊀、  ー◯
⑥F|B(終端優先)
 ◯  | ◯ ◯
㊀ー◯ | ー㊀◯ 
  ㊀ |   ㊀
⑦G|B(終端除去)
    | ㊀◯
㊀㊀◯ | ー㊀◯

151:132人目の素数さん
19/12/03 19:05:10.16 PHS8a67O.net
>>144のリストが還元になっている事を示す。
・初手実行の還元は実際に初手として可能な全ての分裂を行った結果の図を右辺に列挙する事によって得られる。
右辺に並ぶ図の最小駆除手数は全て左辺の手数+1であるから還元図になる。
ー例ー
②B|C,D(初手実行)
    | ◯   
㊀ー  | ー㊀  ㊀㊀
 ㊀ー | ー㊀ー、 ー㊀
・終端優先の還元は左辺図内のある生物を分裂させてもその子が他の全ての生物の分裂を阻害しないとき、その分裂を優先する最小手順解があることから、その分裂を実行した図を右辺に書く事によって得られる。
やはり右辺の図の最小駆除手数は左辺の手数+1であるから還元図となる。
ー例ー
④E|B(終端優先)
 ◯  | ㊀◯  
㊀ー◯ | ー㊀◯
・終端除去の還元は⑦のみである。
⑦左辺の虫を除去する最小手順において左の虫をA、それが分裂したときに現れる上の虫をB、右の虫をCとする。
Bは要駆除点でなく、Bは以降のたの分裂を邪魔しないため最小手順においては分裂しない。
Cは要駆除地点にいるのでいくらか後に分裂し、その上の虫をD、右の虫をEとするとBが分裂しないのと同じ理由でD、Eも分裂しない。
よって⑦左辺の最小駆除手順においてAとその子孫が分裂する回数は高々二回である。
よってその手順からAとその子孫を取り除けば図
ーー
ー㊀㊀
の駆除手順が得られ、その手順数は⑦左辺のものよりちょうど2小さい。
逆に⑦左辺の図において、上図の除去を行った後、AとCの分裂を行えば⑦右辺の図の駆除手順となるので⑦左辺の最小駆除手数は上図のそれ+2以下である。
以上により上図の最小駆除手数は⑦左辺のそれよりちょうど2小さい。
さらに上図に初手還元と終端優先を行えば
㊀◯
ー㊀◯
が得られ、その最小駆除手数は上図のそれよりちょうど2だけ大きい。
以上により⑦の左辺と右辺の最小駆除手数はちょうど等しいので⑦は弱還元である。
ー例ー
⑦G|H(終端除去)
    | ㊀◯
㊀㊀◯ | ー㊀◯

152:132人目の素数さん
19/12/03 19:06:07.74 PHS8a67O.net
証明を完成させる。
Aの図の最小駆除手数が有限とする。
①によってAはBに還元されるらBのそれも有限である。
還元を"合成"することにより②~⑦によってBはB自身に還元される。
すなわち
B|B
なる形の還元を得る。
当然左辺の最小駆除手数と右辺の最小駆除手数は等しい。
しかし先の"合成"において右辺のBへの還元は少なくとも⑦以外の還元を一回以上含むので強還元である。
よって左辺の最小駆除手数は右辺の最小駆除手順より真に大きい。
これは矛盾である。

153:132人目の素数さん
19/12/03 19:07:39.90 PHS8a67O.net
後は全ての要駆除地点数が4か所以下の場合駆除可能を示せば>>113の(2)は終わり。
それはさほど難しくない。

154:132人目の素数さん
19/12/03 19:13:56.14 q3do5N+i.net
お?記念パピコ

155:イナ
19/12/03 21:13:17.60 tHGFd0Ca.net
>>140つづき。
>>101
S=S(A,P)+S(P,Q)+S(Q,B)
=(2/3)√(2p^2-1)-14/27+(4/3)√(p^2-1)-2p√(p^2-1)―③
24p^3-30p^2-9p+5=0―④
③を微分すると、
S'=(2/3)(1/2)4p/√(2p^2-1)+(4/3)(1/2)2p/√(p^2-1)-2√(p^2-1)-2p(1/2)2p√(p^2-1)
=(4p/3)√(2p^2-1)+(4p/3-2-p)√(p^2-1)
=(4p/3)√(2p^2-1)+(p/3-2√(p^2-1)=0
4p√(2p^2-1)=(6-p)√(p^2-1)
16p^2(2p^2-1)=(p^2-12p+36)(p^2-1)
32p^4-16p^2=p^4-12p^3+36p^2-p^2+12p-36
31p^4+12p^3-51p^2-12p+36=0―⑤

156:132人目の素数さん
19/12/03 22:00:25.13 PHS8a67O.net
>>146
訂正
>>145のリストは全部強還元だね
    | ーー
㊀㊀◯ | ー㊀㊀
が強還元だ。
左辺の最小駆除手数=右辺の最小駆除手数+2でした。
なので
⑦左辺の最小駆除手数=⑦右辺の最小駆除手数+4。

157:132人目の素数さん
19/12/04 02:08:39.81 Jljxtj0w.net
ω_Nを半径1のN次元空間球({x∈R^N | |x|=1})の体積(N次元ルベーグ測度)とする
(1) 急減少関数f:[0,∞)→Rに対して、
∫_R^N f(|x|) dx=Nω_N ∫_0^∞ r^(N-1) f(r) dr
となることを示せ
(2)ω_Nを求めよ

158:132人目の素数さん
19/12/04 03:12:22.24 QgYj7jDm.net
球?球面?

159:132人目の素数さん
19/12/04 03:22:50.83 Jljxtj0w.net
>>153
すみません
修正します
球{x∈R^N | |x|≦1}です

160:132人目の素数さん
19/12/04 04:21:30 OqD6i4Hu.net
>>152
(1)
M=S^(N-1)とおき、Nの体積形式をηとする。
R×N→R^Nを(r,θ)=rθで定めればR^Nの体積形式はr^(N-1)ηdrである。
よって
∫[x∈R^N]f(|x|)dx
=∫[r>0,θ∈S^(N-1)] f(|rθ|)r^(N-1)ηdr
=∫[θ∈S^(N-1)]η∫[r>0] r^(N-1)f(r)dr
=vol(S^(N-1))∫[r>0] r^(N-1)f(r)dr
である。
一方で
ω_N
=∫[x≦1]1dx
=∫[0<r<1,θ∈S^(N-1)] r^(N-1)ηdr
=∫[θ∈S^(N-1)]η∫[0<r<1] r^(N-1)dr
=vol(S^(N-1))/N
により主張は成り立つ。
(2)
f(x)=exp(-x^2)とすれば
∫[x∈R^N]f(|x|)dx
=(∫[t∈R]exp(-x^2)dt)^N
=π^(N/2)、
∫[r>0]r^(N-1)exp(-r^2)dr
=∫[t>0]t^((N-1)/2)exp(-t)t^(-1/2)dt/2
=(1/2)∫[t>0]t^(N/2-1)exp(-t)dt
=Γ(N/2)/2
であるから(1)により
ω_N=2π^(N/2)/(NΓ(N/2))=π^(N/2)/Γ(N/2+1)。

161:132人目の素数さん
19/12/04 04:58:10.11 It6vGKRF.net
ID:PHS8a67O
お疲れ様です。すごい!

162:132人目の素数さん
19/12/04 11:23:45.41 Jljxtj0w.net
>>155
正解です
(1)は測度論的にするのであれば
H^(N-1)を(N-1)次元ハウスドルフ測度として
Coarea formula
∫_R^N f(x)|∇u(x)|dx=∫_R∫_{u=t} f(x) dH^(N-1)(x)dt
においてu(x)=|x|とすれば極座標の積分が�


163:アけます (H^(N-1)({x∈R^(N-1) | |x|=t })=(d/dt){ω_N t^N} となることもCoarea formulaから導ける)



164:132人目の素数さん
19/12/05 02:33:02 JD2j4fRH.net
R^3\{0}は直線の直和か?

165:イナ
19/12/06 15:57:10.35 9FWnnign.net
>>101>>150正解は出たらしいけど出題者が意図した解法を言い当てただけで、肝心の座標が出てないみたいだから、今年最後の小説投稿がすんだら、ちゃんと計算してみるよ。
 ̄ ̄]/\______∩∩_
____/\/ ,,、、(___))|
 ̄ ̄\/ 彡`-`ミっ゙/ |
 ̄ ̄|\_U,~⌒ヾ、| |
□ | ∥ ̄ ̄U~~U | / )
____| ∥ □ ∥ |/ /|
_____`∥______∥ノ / |
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄∥ |
□  □  □  ∥ /
__________________∥//
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄_/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__

166:132人目の素数さん
19/12/09 07:46:29.55 g2fJs3Gj.net
>>81
100万回のシミュレーション結果
> k=1e6
> re=replicate(k,sim())
> mean(re[1,])
[1] 0.124957
> mean(re[2,])
[1] 0.08093
> mean(re[3,])
[1] 0.04078
直感通り、1,2,3の順番になった。

167:132人目の素数さん
19/12/09 12:48:17.50 3RsZZfph.net
>>92
 p = 256/(6^6) = 0.0054869684499314
 q = 128/(6^6) = 0.0027434842249657
より
 P(re[2,]) = 15p -45p^2 +10p^3 = 0.0809513716761635
 P(re[3,]) = 15q -45q^2 +10q^3 = 0.0408137681123003

168:132人目の素数さん
19/12/09 20:18:06 3RsZZfph.net
1. の5連(B)は、複数回現れる場合は重複しうる。

5連Bを1回以上含む確率
s1 + s2 + s3 + s4 = 32 / 243 = 0.1316872428

5連Bを2回以上含む確率
 s2 + 3s3 + 6s4 = 408/243^2 = 0.006909515825

5連Bを3回以上含む確率
 s3 + 4s4 = 2368 / 243^3 = 0.000165408747842

5連Bを4回含む確率
 s4 = 4912 / 243^4 = 0.000001408747842

よって 1.の起こる確率は
 P(re[1,]) = s1 + s2 + s3 + s4 = 435643544 / 243^4 = 0.124941348

169:132人目の素数さん
19/12/09 20:21:15 3RsZZfph.net
訂正
5連Bを1回以上含む確率
s1 + 2s2 + 3s3 + 4s4 = 32 / 243 = 0.1316872428

170:132人目の素数さん
19/12/10 06:49:28.11 9+9M8wAb.net
5連Bをちょうどk回含む確率を s_k とすると
 s1 + 2s2 + 3s3 + 4s4 = 32 / 243 = 0.1316872428
 s2 + 3s3 + 6s4 = 408 / 243^2 = 0.006909515825
 s3 + 4s4 = 2368 / 243^3 = 0.000165408747842
 s4 = 4912 / 243^4 = 0.000001408747842
よって 1.の起こる確率 (5連Bを1回以上含む確率) は
 P(re[1,]) = s1 + s2 + s3 + s4
   = (s1+2s2+3s3+4s4) - (s2+3s3+6s4) + (s3+4s4) - s4
   = 435643544 / 243^4
   = 0.124941348

171:132人目の素数さん
19/12/10 10:19:04.22 9+9M8wAb.net
>>111
>>159
A (1, 0)
P ((c +1/c)/2, (c -1/c)/2) = (1.067805422329  0.374444147978)
Q ((cc +1/cc)/2, (cc -1/cc)/2) = (1.280416839911  0.799666983141)
B (5/3, 4/3) = (1.666666666667  1.333333333333)
ここに c = 3^(1/3) = 1.442249570307

172:132人目の素数さん
19/12/10 14:34:09.51 9+9M8wAb.net
b = log(3) = 1 + log(3/e) ≒ 3/e,
A (1, 0)
P (cosh(1/e), sinh(1/e)) = (1.06843424428  0.3762336167)
Q (cosh(2/e), sinh(2/e)) = (1.2831034687  0.8039617599)
B (5/3, 4/3) = (1.6666666667  1.3333333333)
とおくと
S(A,P) = S(P,Q) = 0.0041770878
S(Q,B) = 0.0040074760
∴ S = 0.0123616516 > 0.012360077

173:132人目の素数さん
19/12/10 21:53:32 9+9M8wAb.net
3^7 = 2187 ≒ 2197 = 13^3
3 ≒ (13/9)^3,
b = log(3) ≒ 3log(13/9),

A (1, 0)
P (125/117, 44/117) = (1.068376068  0.376068376)
Q (17561/117^2, 11000/117^2) = (1.282854847  0.803564905)
B (5/3, 4/3) = (1.666666667  1.333333333)
とおくと
S(A,P) = S(P,Q) = 0.004171798
S(Q,B) = 0.004017778
∴ S = 0.012361374 > 0.012360077

174:132人目の素数さん
19/12/12 21:1


175:4:54.21 ID:cmGMjPnC.net



176:132人目の素数さん
19/12/13 21:55:09.75 UQGwVa0R.net
∞じゃないの?
直径1の円盤内にいくらでも長さの長い単純閉曲線いれられるのでは?

177:132人目の素数さん
19/12/14 00:03:41.23 blC5qr67.net
>>169
「凸」

178:132人目の素数さん
19/12/14 00:15:14.20 9DqcUvSD.net
i see

179:132人目の素数さん
19/12/14 00:56:26.06 9DqcUvSD.net
まずJordan凸閉領域Δに対しΔ(t)を
Δ(t)={p | d(p,Δ)≦t}
で定める。
この時vol(Δ(t))はtの多項式で
vol(Δ(t))=πt^2+l(∂Δ)t+vol(Δ)
である。(l(∂Δ)は∂Δの長さ)
実際折れ線の時明らかで一般のJordan凸領域の場合には折れ線近似で示される。
今Δが直径dの円盤Dに含まれる時
vol(Δ(t))≦vol(D(t))
が任意のt>0について成立するから特に
l(∂Δ)≦l(∂(D))=πd/2
である。
よって周率の最大値はπ/2である。

180:132人目の素数さん
19/12/14 01:10:23.68 u/Fw3eyq.net
>>172
円の時、周率はもちろんπなので不正解です

181:132人目の素数さん
19/12/14 01:17:29.50 u/Fw3eyq.net
>>172
それに、曲線の直径がdだからといって、その曲線が直径dの円に入るとは限りません(正三角形とか)

182:132人目の素数さん
19/12/14 07:50:09.94 MVg/A4+M.net
πとπ/2まちがえたのは単なる勘違いです。
そうか、直径がdだから直径dの円盤に入るとは限らないか。

183:イナ
19/12/14 10:24:29.20 Ernfr8Zx.net
>>159
>>101【問題】
>>111>>165
x^2-y^2=1,x>0
A(1,0)
P({3^(1/3)+1/3^(1/3)}/2,
{3^(1/3)-1/3^(1/3)}/2)
Q({3^(2/3)-1/3^(2/3)}/2,
{3^(2/3)-1/3^(2/3)}/2))
B(5/3,4/3)
5/3=(3+1/3)/2
4/3=(3-1/3)/2
AB間に面積的に等間隔にP,Qをとると、三乗根とその逆数の相加平均―という結果を受け入れるしかないなぁ。

184:イナ
19/12/14 15:15:13.14 Ernfr8Zx.net
>>176
>>101正攻法で解く。
y=√(x^2-1)≧0,x≧1
=(x^2-1)^(1/2),x≧1
A(1,0)
P(p,√(p^2-1))
Q(q,√(q^2-1))
B(5/3,4/3)
S(A,P)=∫[x=1→p]{(x^2-1)^(1/2)-(p^2-1)^(1/2)(x-1)/(p-1)}dx
=[x=1→p]{(x^2-1)^(3/2)/(3/2)}/(2x)-(p^2-1)^(1/2)x^2/2(p-1)-x/(p-1)
=(p^2-1)√(p^2-1)/3p-(p^2-1)^(1/2)p^2/2(p-1)-p/(p-1)
-1/3+(p^2-1)^(1/2)1^2/2(p-1)+1/(p-1)
S(P,Q)=∫[x=p→q][(x^2-1)^(1/2)-{(q^2-1)^(1/2)-(p^2-1)^(1/2)}(x-p)/(q-p)-(p^2+1)^(1/2)]dx
S(Q,B)=∫[x=q→5/3][(x^2-1)^(1/2)-{(4/3)-(q^2-1)^(1/2)(x-5/3)}/(5/3-q)-4/3]dx
S(A,P)=S(P,Q)より、
―①
S(A,P)=S(Q,B)より、
―②
①②より、p= ,q=
∴P,Qの座標は、
P( , ),Q( , )

185:132人目の素数さん
19/12/17 00:49:34.33 S/nA2eOA.net
>>168がどう解けばいいのか分からん...
とりあえずx^p+y^p=1のハイパー楕円で数値計算してみたけどp=2が最小になりそうではあった

186:132人目の素数さん
19/12/17 00:50:47.91 S/nA2eOA.net
>>178
最小→最大

187:132人目の素数さん
19/12/17 04:02:50.69 mT7UUd1w.net
面白いかどうか人に依るけど、これの逆行列って手計算でいける?
URLリンク(i.imgur.com)

188:132人目の素数さん
19/12/17 10:32:28.89 /04vhOiY.net
>>180
A(1,1) = 1
A(i,i) = 2   (2≦i≦n)
A(i,i+1) = -1,
A(j+1,j) = -1,
A(i,j) = 0,  (|i-j|≧2)
B(i,j) = n+1 - Max{i,j} = min{n+1-i, n+1-j}

189:132人目の素数さん
19/12/17 19:52:45 zOjVhgNh.net
>>168
とりあえず前半ができたかな?
適当に近似してC^∞で考える。
diam=2とする。
領域はa(-π/2)=a(π/2)=0である関数を用いて領域
-1+a(t)≦xcos(t)+ysin(t)≦1+a(t)
にあるとしてよい。
直線族xcos(t)+ysin(t)=1+a(t)の包絡線を計算すると
x=acos(t)-a'sin(t)、y=asin(t)+a'cos(t)
となりこの包絡線の長さは
∫(1+a+a'')dt
である。
同様に直線族xcos(t)+ysin(t)=-1+a(t)の包絡線の長さは
∫(1-a-a'')dt
となり、これら二曲線の長さの和は2πである。
よって元の曲線の長さも>>172により2π以下とわかる。
以上により周率の最大値はπである。□

190:132人目の素数さん
19/12/17 20:47:40.48 ANQsbXxj.net
>>180
・ブロック分割して直接計算(左下の漸化式)
・基本に戻って?掃き出し法
>>181をチラ見した後()なら、見当をつけて帰納法
自分で言うのもアレだが、どれもつまらない
Cartan行列もどきなので、何か上手い手があるのかもしれない

191:132人目の素数さん
19/12/18 03:46:05.43 7FLg/0yy.net
>>182
例えばa(t)=cos(t)とすれば
包絡線は(x-1)^2+y^2=1になってしまい、直径2の凸図形が全て入るとは限らないと思うのですが

192:132人目の素数さん
19/12/18 04:00:55.92 7FLg/0yy.net
>>184
すみません勘違いしました
つまり直径2の凸図形を任意に用意して、内部の点Oからx軸となす角度tの直線L(t)を引いて凸図形との二交点ABの距離は常に2以下なので|OA|≦1+a(t)、|OB|≦1-a(t)となるように関数a(t)が取れて、
さらに、その凸図形内の点(x,y)をL(t)に射影したときのOからの長さが常に1-a(t)、1+a(t)で抑えられるということですか?

193:132人目の素数さん
19/12/18 10:14:40.17 Kc9D2QKc.net
>>185
そうです。
周の長さがa(t)の取り方によらず常に2πになるみたいです。

194:132人目の素数さん
19/12/18 11:47:25.68 7FLg/0yy.net
>>186
なるほど 素晴らしい解答ありがとうございます
ちなみに想定していた解法は以下の通りです
凸曲線C上の点pにおける接線lの平行線l’がC上の別の一点のみと交わるとき、lとl’の距離をW(t)とする.(Cの点pにおける幅)
曲線を{p(t)}_{t∈[0,2π]}として、p(t)における内向き法線ベクトルn(t)がn(t)=(cost,sint)となるようにパラメータ付ける. このとき、W(t)=-p(t)・n(t)-p(t+π)・n(t+π)となる.
したがってLをCの長さ、vを単位接ベクトル、kを曲率とすれば、
∫_0^π W(t)dt
=∫_0^π {-p(t)・n(t)-p(t+π)・n(t+π)}dt
=-∫_0^(2π) p(t)・n(t) dt
=-∫_0^L p(s)・n(s) k(s) ds (孤長パラメータに変換)
= -∫_0^L p(s)・v’(s) ds
= ∫_0^L p’(s)・v(s) ds
= ∫_0^L v(s)・v(s) ds
=L となる.
よって、max_{t∈[0,2π]} W(t)≦直径 に注意すれば、
周率=長さ/直径≦ ∫_0^π W(t)dt/ max_{t∈[0,2π]} W(t)
≦π* max_{t∈[0,2π]} W(t)/max_{t∈[0,2π]} W(t)=π. ◽︎
ちなみにこのことから、等号が成立する必要十分条件は凸曲線が定幅曲線、ということになります
したがって>>168後半の問題は「直径固定の


195:定幅曲線で囲まれる面積が最小のものを求めよ」という問題になります



196:132人目の素数さん
19/12/19 08:53:34.12 HO+P0Q3G.net
>>187
後半ヒントおながいします。

197:イナ
19/12/19 19:41:33.61 SXZy4mCY.net
>>177
>>111なんで急にlog3が出てきたの?
1/xを積分したの?
積分したら負けって言ったのに。気にlog。
log3/3=0.159040418……
2log3/3=0.318080836……
グラフを描いたらなんかわかる可能性はあるけど。なにかを知ってて意図的に出したとしか思えない。

198:イナ
19/12/19 20:00:40.55 SXZy4mCY.net
>>189
>>112は公約どおり積分してないみたいだけど、
expのとこが怪しい。
気にlog出したりはしてないけど、気に3^(1/3)を出してる。
数学は答えを言い当てる理科や社会とは違うはず。
論理的なつながりで答えを導かないと説得力がない。
正解とは言えない。

199:132人目の素数さん
19/12/19 20:04:19.44 pk6IKNrH.net
cosh(t)=5/3を解いてるだけやん

200:132人目の素数さん
19/12/19 21:15:55.83 ULxMJW80.net
>>188
すみませんがこれは前半ほどサクッとは解けません
というより名前の付いた定理です(ググれば出ます)
ポントリャーギンの最大値原理を使って示します

201:イナ
19/12/19 23:14:12.74 SXZy4mCY.net
>>190
急に(きゅうに)を書きこむと、なぜか文字化けして、
× 気に(きに)になるけど、
○ 急に(きゅうに)です。
>>191点Bのx座標が5/3というのはわかります。
なにを解いてlog3が出てきたのかがわかりません。1/xを積分したのがlog|x|だというのは知ってます。

202:132人目の素数さん
19/12/19 23:38:58.49 pk6IKNrH.net
だから
cosh(t)=(e^t+e^(-t))/2=5/3
sinh(t)=(e^t-e^(-t))/2=4/3
を解く。

203:132人目の素数さん
19/12/20 02:06:23.61 yiLw1Jz8.net
0630
しろ@huwa_cororon 11月27日
苦節6ヶ月、初満点&一等賞です!
URLリンク(twitter.com)
(deleted an unsolicited ad)

204:132人目の素数さん
19/12/20 09:42:54.14 ipZ1Vjdr.net
n個の実数 a_i (i=1,2,...n) から任意のx,y を選んでリストから消し、f(x,y)を付け加える操作を繰り返す
と最終的に一つの実数が残ります。最終的に残る値が選び方によらずに同一の値になるような
f(x,y)の必要十分条件を求めてください。

205:132人目の素数さん
19/12/20 11:01:39.26 RnyITPkA.net
(R,f)が可換半群になること

206:イナ
19/12/20 19:37:40.65 YrQye4gv.net
>>193
>>194cosやsinやeが出てくるとわかりにくいので、3つの領域の面積を足すか、等しいとおくか、そっちの方針で積分の仕方を教えてもらえませんか?
S=∫[x=1→p](x^2-1)^(1/2)dx+∫[x=p→q](x^2-1)^(1/2)dx+∫[x=q→5/3](x^2-1)^(1/2)dx
-(1/2)(p-1)√(p^2-1)
-(1/2)(q-p){√(p^2-1)+√(q^2-1)}
-(1/2)(5/3-q){√(q^2-1)+4/3}
積分関数は微分したもの(2x)で割るんじゃなく、微分したもの(2x)を掛けるんでしたか? 割るとすべての項が負になったので、これは違うなと。

207:132人目の素数さん
19/12/20 22:37:38.80 2HvWqgn1.net
>>198
面積だすならその式で合ってる。
どうしても積分したいならそこで普通は
x=cosh(t)
で置換する。
x=(1/2)(t+1/t)
と置換する手もある。
しかし求めたいのは面積ではなく、面積�


208:フ最小値を与えるp,qの値なのだから求めたあとp,qどっちかの関数として微分する事になる。 その瞬間苦労して積分した∫√(x^2-1)dxのところは消えてしまう。 残るのは>>198の式の三角形や台形の面積(の導関数)。 なので∫√(x^2-1)dxのとこは無視できる。 やりたければどうぞ。



209:132人目の素数さん
19/12/20 22:37:44.56 2HvWqgn1.net
>>198
面積だすならその式で合ってる。
どうしても積分したいならそこで普通は
x=cosh(t)
で置換する。
x=(1/2)(t+1/t)
と置換する手もある。
しかし求めたいのは面積ではなく、面積の最小値を与えるp,qの値なのだから求めたあとp,qどっちかの関数として微分する事になる。
その瞬間苦労して積分した∫√(x^2-1)dxのところは消えてしまう。
残るのは>>198の式の三角形や台形の面積(の導関数)。
なので∫√(x^2-1)dxのとこは無視できる。
やりたければどうぞ。

210:132人目の素数さん
19/12/20 22:37:54.45 2HvWqgn1.net
>>198
面積だすならその式で合ってる。
どうしても積分したいならそこで普通は
x=cosh(t)
で置換する。
x=(1/2)(t+1/t)
と置換する手もある。
しかし求めたいのは面積ではなく、面積の最小値を与えるp,qの値なのだから求めたあとp,qどっちかの関数として微分する事になる。
その瞬間苦労して積分した∫√(x^2-1)dxのところは消えてしまう。
残るのは>>198の式の三角形や台形の面積(の導関数)。
なので∫√(x^2-1)dxのとこは無視できる。
やりたければどうぞ。

211:132人目の素数さん
19/12/20 22:38:57.22 OCQhfx9K.net
>>198
面積だすならその式で合ってる。
どうしても積分したいならそこで普通は
x=cosh(t)
で置換する。
x=(1/2)(t+1/t)
と置換する手もある。
しかし求めたいのは面積ではなく、面積の最小値を与えるp,qの値なのだから求めたあとp,qどっちかの関数として微分する事になる。
その瞬間苦労して積分した∫√(x^2-1)dxのところは消えてしまう。
残るのは>>198の式の三角形や台形の面積(の導関数)。
なので∫√(x^2-1)dxのとこは無視できる。
やりたければどうぞ。

212:132人目の素数さん
19/12/20 22:40:46.67 OCQhfx9K.net
スマソ。
あまりの重さに連投になってしまった。orz

213:イナ
19/12/20 23:48:59.03 YrQye4gv.net
>>198え、あってんの!?
やったー!! やっぱ積分したら負けなんですね。積分しないで解けるってことですね。せやて積分したら3項とも負になったでね。連投いいですよ。べた褒めみたいでとてもいいです。
で、どうやってp,qを出すかですが、どうしたらいいんですか? eとかcosとかsinとかなしで。置換してもいいけどcosとかはやめて。ていうか積分なしで。

214:132人目の素数さん
19/12/21 00:17:18 niWYfzaW.net
>>204
だから>>198のS=の右辺をp,qの2変数関数とみなして増減を調べる。
第1項~第3項の和はp,qに無関係な定数。
未知数二つなので式二つ必要。
まずqを定数とみなしてpのみの関数とみなして微分して0が必要でそれで一個。
次にpを定数とみなしてqのみの関数とみなして微分して0が必要で二個目。
正しく解けは解ける。

215:イナ
19/12/21 01:35:39.06 q5Y63yec.net
>>204
>>205
S'(p)=0より、―①
S'(q)=0より、―②
①②より、p= q= 
積分したら負け、微分したら勝ち。
なるほど。面白い。

216:132人目の素数さん
19/12/21 11:18:59.36 04Yc6W8C.net
nを自然数とする。ある多項式F(x)について、xの次数がnの倍数である項の係数の和をf(n)とする。ただし定数項はxの次数が0である。
(0) F(x)=(1+x)^7 のとき f(2), f(3)の値を求めよ。また
(1) 素数pについて、
f(p)=(1/p)*{Σ[k=1→p] F(cos(2kπ/p)+isin(2kπ/p))}
で表されることを示し、
(2) f(n)=(1/n)*{Σ[k=1→n] F(cos(2kπ/n)+isin(2kπ/n))}
で表されることを示せ。

217:132人目の素数さん
19/12/21 12:28:49.85 ucYznWes.net
>>207
各nについてf(n)を多項式環からの写像と見なせば線形写像であるから単項式について示せば十分。
以下ζ=e^(2πi/n)とする。
F(x)=x^tとする。
tがnの倍数でないとき
(1/n)ΣF(ζ^k)=(1/n)(1-ζ^n)/(1-ζ)=0=f(n)。
tがnの倍数のとき
(1/n)ΣF(ζ^k)=(1/n)n=1=f(n)。

218:132人目の素数さん
19/12/21 17:32:43.94 lcZbkAwJ.net
>>208
すいません、高校数学の言葉に焼き直すとどうなりますか...?

219:132人目の素数さん
19/12/23 01:54:49.32 qOLAQK9r.net
nを2以上の整数、kを0以上n以下の整数とする。部屋には男子と女子が何人かいて、どの男子と女子についても、互いに知り合いであるか知り合いでないかのどちらかである。
どの男子もちょうどn人の女子と知り合いであり、どの女子もちょうどn人の男子と知り合いである。
また、どの2人の男子においても、共通の知り合いである女子はちょうどk人である。このときどの2人の女子においても、共通の知り合いである男子はちょうどk人であることを示せ。

220:132人目の素数さん
19/12/23 02:05:33.16 ejWHZ3VG.net
>>196
f(x,y)=F^(-1)(F(x)+F(y)) (F^(-1)は逆関数、F(x)は任意の関数)
Σ(i=1,2,...n)F(a_i) が入れ替えの操作で不変量となるから

221:132人目の素数さん
19/12/23 08:04:12.57 FUuuzwBf.net
日本シリーズは先に4勝したチームが優勝


222:。 勝率はそれまでの通算勝率に従うとする。引き分けはないものとする。 勝負がつくごとに次回の勝率が変化する。 シリーズ開始前の通算成績はA:2勝、B:4勝であった。 今シリーズでAが先勝(第一試合に勝利)した。 この時点でどちらが優勝するか賭けをする。 A,Bのどちらに賭ける方が有利か?"



223:132人目の素数さん
19/12/23 09:01:25.24 petpfgon.net
>勝負がつくごとに次回の勝率が変化する。

224:イナ
19/12/23 10:13:24.32 YQobTPKD.net
>>206
Bで。

225:132人目の素数さん
19/12/23 12:11:18.51 VYNDirBk.net
>>210
男の人数をp、女の人数をqとしてp行q列行列Aを
Aij=1 男iと女jが知り合いのとき
. 0 otherwise
で定める。
またAの転置行列をA~で表すとする。
条件より全行ベクトルの和は全成分がnの1行q列のベクトルであり、その成分の和はqnである。
同様に全列ベクトルの和は全成分がnのp行1列のベクトルであり、その成分の和はpnである。
これらが等しいからp=q。
p次単位行列をI、全成分が1のp次正方行列をBとすれば条件より
AB=BA=nB
AA~=(n-k)I+kB
である。
よってAはBと可換であり、したがって(n-k)I+kBとも可換である。
ここでBはrank1の行列でその固有値pは(k-n)/kと一致しないから(n-k)I+kBは可逆である。
よってAも可逆であり
A~=A^(-1)((n-k)I+B)
もAと可逆である。
以上によりA~A=(n-k)I+B
であり主張は示された。□

226:132人目の素数さん
19/12/23 12:18:54.81 ecugu1xJ.net
>>213
第二試合にAが勝つ確率は通算勝率の3/7
Aが勝ったら第三試合に勝つ確率は4/8
Aが負けたら第三試合に勝つ確率は3/8
になるという設定。

227:132人目の素数さん
19/12/23 12:45:22.48 Vck4TjAJ.net
>>212
同じになった
計算間違えているとするとなかなか奇跡的w

228:132人目の素数さん
19/12/23 13:02:50.72 ecugu1xJ.net
>>217
私の計算でも0.5になった。

229:132人目の素数さん
19/12/23 13:17:01.60 Vck4TjAJ.net
じゃあ合ってるのか
何かうまい考え方をすると簡単に五分五分だとわかることなんだろうか

230:132人目の素数さん
19/12/23 13:19:05.26 ecugu1xJ.net
100万回のシミュレーションでも0.5みたい。
> rm(list=ls())
> N_series <- function(A=1,B=0,w=4,a=2,b=4,k=1e6){
+ sim <- function(){
+ while(A < w & B < w){
+ p=(A+a)/(A+B+a+b)
+ g = rbinom(1,1,p)
+ if(g==1){
+ A=A+1
+ }else{
+ B=B+1
+ }
+ }
+ A > B
+ }
+ mean(replicate(k,sim())) # Pr[A wins]
+ }
> N_series()
[1] 0.500051

231:132人目の素数さん
19/12/23 13:19:40.51 ecugu1xJ.net
>>219
実はそれが知りたくて投稿してみた。

232:132人目の素数さん
19/12/23 13:30:37.77 Vck4TjAJ.net
nを2以上の自然数として(2n-1)戦でn勝した方が勝ちというシリーズで1戦目を負けた方のチームの勝率がn/(2n-1)になるとシリーズ優勝の確率は同率になるのかな?

233:132人目の素数さん
19/12/23 16:52:56.92 /G9qsiWR.net
>>212
不透明な壺と透明な壺を用意し、どちらにも、n個の白玉とm個の黒玉を入れておく。(n、mは正整数)
「不透明な壺に手を入れ、よくかき混ぜて球を一つ取り出し、色を確認して戻し、
 同じ色の球を透明な壺から不透明な壺へ一つ移す。」
という操作を繰り返し行い、不透明な壺から白玉の方が先に無くなる確率は?
(恐らく)答え n,mの値に関係なく 1/2
という問題の具体例版 だと思う。

234:132人目の素数さん
19/12/23 16:55:01.28 /G9qsiWR.net
誤:という操作を繰り返し行い、不透明な壺から白玉の方が先に無くなる確率は?
正:という操作を繰り返し行い、 透明な壺から白玉の方が先に無くなる確率は?

235:イナ
19/12/23 18:31:02.00 YQobTPKD.net
>>214
>>212え、Bのほうが有利なんじゃないの? 先にAが勝っただけで通算だとBのほうが勝率いいじゃん。第2戦は4/7の確率でBが勝つよ。Bが勝った場合、第3戦は5/8の確率でBが勝つ。Bが勝った場合、第4戦は6/9=2/3の確率でBが勝つ。Bが勝った場合、第5戦は7/10すなわち7割の確率でBが勝って日本一。 そろともなにか? 負ける場合も考えると勝つ確率は変わると言うのか? じゃあ考えたら負けだ。7割勝つ。信じるしかない。



237:132人目の素数さん
19/12/23 18:49:59.56 /K57AvEV.net
>>225
>先にAが勝っただけ
という時点で運命が決まったんじゃないの?

238:132人目の素数さん
19/12/23 19:18:17.09 /K57AvEV.net
0.5を算出する前提
Aが優勝する以後の勝敗の順列(1を勝ちとする)は以下の20通り。
> (dat3=dat[apply(dat,1,sum)==3,]) # Aあと3勝の仕方 末尾に連続する0は無視
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 0 0 1 1 1
[2,] 0 0 1 0 1 1
[3,] 0 0 1 1 0 1
[4,] 0 0 1 1 1 0
[5,] 0 1 0 0 1 1
[6,] 0 1 0 1 0 1
[7,] 0 1 0 1 1 0
[8,] 0 1 1 0 0 1
[9,] 0 1 1 0 1 0
[10,] 0 1 1 1 0 0
[11,] 1 0 0 0 1 1
[12,] 1 0 0 1 0 1
[13,] 1 0 0 1 1 0
[14,] 1 0 1 0 0 1
[15,] 1 0 1 0 1 0
[16,] 1 0 1 1 0 0
[17,] 1 1 0 0 0 1
[18,] 1 1 0 0 1 0
[19,] 1 1 0 1 0 0
[20,] 1 1 1 0 0 0

239:132人目の素数さん
19/12/23 19:19:27.58 /K57AvEV.net
Aが優勝する以後の勝敗の順列=Aが優勝するときの第二試合以後の勝敗の順列

240:132人目の素数さん
19/12/23 23:55:27.94 /G9qsiWR.net
>>223
続き
白玉がn個出る前に、黒玉がk(k<m)個でる確率は
黒玉が連続してk個出て、白玉が連続してn個出る確率のC[n+k-1,k]倍なので、
C[n-1+k,k]*{m*(m+1)*...*(m+k-1)}*{n*(n+1)*...*(2n-1)}/{(n+m)*(n+m+1)*...*(2*n+m+k-1)}
=C[n-1+k,k]*P[m+k-1,k]*P[2n-1,n]/P[2n+m+k-1,n+k]
黒玉が0個からm-1個までの和を取れば、求める確率なので、
Σ[k=0,m-1]{C[n-1+k,k]*P[m+k-1,k]*P[2n-1,n]/P[2n+m+k-1,n+k]}
が求めるもの。
m,nに適当な数字を入れてWolfram先生に計算してもらったところ、
m,nに関係なく、 1/2 になるようです。予想は正しそうですが、証明はちょっと難しい。

241:
19/12/24 00:11:35.58 mv44BLS5.net
>>225
>>226それはどうかな。
俺は俺が勝つために投げたし、みんな勝つために打ったり守ったり走ったりしたと思う。結果的に7割勝つとわかった。それ以上でもそれ以下でもない。
最初Aに負けて、どうなるかと思った。もうだめなんじゃないかとさえ思ったよ。
それで運命が決まったとは思わないけど、運命というものがあるのなら、あるいはそうかもね。

242:132人目の素数さん
19/12/24 00:23:22.12 5iwLbmeP.net
超幾何定理の香りが漂うような‥‥

243:132人目の素数さん
19/12/24 02:18:50.81 9bkfghx0.net
>>230
優勝するにはAはあと3勝必要だがBはあと4勝必要と運命づけられちゃったと言えない?

244:132人目の素数さん
19/12/24 03:01:07.37 EQnFLeQj.net
ポリヤの壺っていう有名問題?

245:イナ
19/12/24 13:29:13.67 mv44BLS5.net
>>230
>>232だから、運命なんてわかんないよ。勝ってるうちに強くなるかもしれないし、試合の前とあとではもう違うんだぜ。運命なんて変えてやるよ。みんなそう思ったと思う。

246:132人目の素数さん
19/12/24 14:19:00.00 A1/Tuq06.net
>>229
m,nを1~10からランダムに選んで10万回のシミュレーションをしてみました。
Polya_Urn <- function(k=1e5){
mn=sample(1:10,2)
m=mn[1]
n=mn[2]
a=rep(0:1,c(m,n))
b0=b1=0
sim <- function(){
while(b0<m & b1<n){
b=sample(a,1)
a=c(a,b)
if(b==1){b1=b1+1}else{b0=b0+1}
}
b1==n
}
c(Prob=mean(replicate(k,sim())),m=m,n=n)
}
> Polya_Urn()
Prob m n
0.50125 8.00000 10.00000
> Polya_Urn()
Prob m n
0.50022 9.00000 5.00000
> Polya_Urn()
Prob m n
0.50065 3.00000 8.00000
> Polya_Urn()
Prob m n
0.49939 2.00000 4.00000
> Polya_Urn()
Prob m n
0.49657 1.00000 9.00000
m,nに関わらず、0.5になるようです。

247:132人目の素数さん
19/12/24 14:20:51.91 A1/Tuq06.net
>>234
ターミネーターのセリフだな。
The future is not set. There is no fate but what we make for ourselves.

248:132人目の素数さん
19/12/24 14:23:54.14 gLqWXW4m.net
計算するまでもなく1/2になるとわかるような考え方がありそうに思えるのだが全然思いつかない

249:132人目の素数さん
19/12/25 05:17:44.73 ylc577yv.net
確率 n/(n+m) で白玉を引いて壺の中の白玉が一つ増える、あるいは、
確率 m/(n+m) で黒玉を引いて壺の中の黒玉が一つ増える、と言う操作(現象)を
確率1で、白成分が、n/(n+m)、黒成分が、m/(n+m) で構成されているキメラ玉を壺に投入する操作と同等
と考えると、白玉が2n個(相当)になるのと、黒玉が2m個(相当)になるのは、同時なので、
どちらが勝つのかが 1/2 づつになるのは当然と 強弁できる かな...?

250:132人目の素数さん
19/12/25 07:37:46.51 oEKznZ6+.net
ポリアの壺問題の帰納法も計算も要らない証明
URLリンク(shiatsumat.hat) enab og.com/entry/2014/12/08/183943 (空白は除去してください)
ってあるのだけど、私には理解できなかった。

251:132人目の素数さん
19/12/25 07:39:57.44 oEKznZ6+.net
>>239
urlがうまく貼れなかったので
ポリアの壺問題の帰納法も計算も要らない証明
で検索してください。

252:132人目の素数さん
19/12/25 09:02:05.31 VfGP4dZh.net
>>239-240
この問題はポリヤの壺の発展形。
残念ながらそのリンクの先の証明だけでは無理です。

253:132人目の素数さん
19/12/25 20:37:42.24 oEKznZ6+.net
>>225
優勝するにはAは現時点の勝率3/7であと3勝、Bは現時点の勝率4/7あと4勝しなくちゃいけない
どちらが有利か、という問題だと思う。

254:イナ
19/12/26 15:55:13.35 vjdKTfeM.net
>>234
>>242Bのほうが有利だね。たとえAが第1戦から3連勝したって最終戦に勝つ確率は6割。それに比べBは先にも言ったように7割。わずかだがBの監督が宙に舞う姿を想像するね。

255:132人目の素数さん
19/12/26 18:02:51.71 S3aobCgr.net
例えば残り四試合で「Aが勝ち」で勝負がつくときのパターンとそれに伴う計算式は次
○○●○ :(3/7)*(4/8)*(4/9)*(5/10)
○●○○ :(3/7)*(4/8)*(4/9)*(5/10)
●○○○ :(4/7)*(3/8)*(4/9)*(5/10)
各因子を分数として見ると、各々は異なるが、分子側全体、分母側全体として見ると、
これらは数字の並べ替えに過ぎず、全て同じ値を持つ。この点に注目して、解答を作ると、
残り三試合で「Aが勝ち」で終了
○○○  :(3/7)*(4/8)*(5/9)=5/42
残り四試合で「Aが勝ち」で終了
[●○○]○  :C[3,1]*(4/7)*(3/8)*(4/9)*(5/10)=1/7
(“[]”は[]内の並べ替えを意味する)
残り五試合で「Aが勝ち」で終了
[●●○○]○  :C[4,2]*(4/7)*(5/8)*(3/9)*(4/10)*(5/11)=10/77
残り六試合で「Aが勝ち」で終了
[●●●○○]○  :C[5,3]*(4/7)*(5/8)*(6/9)*(3/10)*(4/11)*(5/12)=25/231
5/42+1/7+10/77+25/231=1/2

256:イナ
19/12/26 18:04:24.76 vjdKTfeM.net
>>243
第2戦Aが勝って第3戦Aが勝って第4戦Aが勝って優勝する確率は(3/7)(4/8)(5/9)=5/42―①
第2戦Aが勝って第3戦A級が勝って第4戦Bが勝って第5戦Aが勝って優勝する確率は、(3/7)(4/8)(4/9)(5/10)=1/21―②
第2戦Aが勝って第3戦Aが勝って第4戦Bが勝って第5戦Bが勝って第6戦Aが勝って優勝する確率は、(3/7)(4/8)(4/9)(5/10)(5/11)=5/231―③
第2戦Aが勝って第3戦Aが勝って第4戦Bが勝って第5戦Bが勝って第6戦Bが勝って第7戦Aが勝って優勝する確率は、(3/7)(4/8)(4/9)(5/10)(6/11)(6/12)=1/77―④


257: ①+②+③+④=1/6+8/231=93/462=31/154 Aが優勝する確率は3100/154=1050/77<(2割ない) Bのほうが有利。



258:132人目の素数さん
19/12/26 18:17:11.99 RCja5F+r.net
>>243
>たとえAが第1戦から3連勝したって
Aはシリーズ開始後はあと3勝すればいいのだから
Aの勝ちを1負けを0で表示すると
Aが優勝するには第2試合以後は
> dat3[17:20,]
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 1 0 0 0 1
[2,] 1 1 0 0 1 0
[3,] 1 1 0 1 0 0
[4,] 1 1 1 0 0 0
の4通り
Bはあと4勝しなくちゃいえないからAが第1戦から3連勝したら
2戦目以後は
1 1 0 0 0 0 (Aの勝ちが1)
でしか優勝できない。

前者は0.1991342
後者は0.01515152
となる。
計算式は
g <- function(x){ # Aの勝敗数列の起こる確率
(tva=cumsum(x)+3) # Aの通算の勝利数
win=c(3,tva)/(7:13) # 試合前の勝利確率
lose=1-win # 負ける確率
(y=rbind(win,lose)[,1:6]) #最終勝率は不要なので除く
p=rep(1,6) # p : 通算勝率の入れ子
for(i in 1:6){
j=ifelse(x[i]==1,1,2) # 勝負によりwin/loseを選択する
p[i]=y[j,i]
if(tva[i]==6) break # シリーズ前2勝+シリーズ4勝で終了
}
cat(p,'\n') # 通算勝率の変遷
return(prod(p)) # その変遷が起こる確率
}
sum(apply(dat3,1,g)) # 可能な順列の確率を総和

259:132人目の素数さん
19/12/26 18:33:04.52 mvnmdT7I.net
>>244
>218ですが、計算ありがとうございました。
きりのいい数字になってびっくりしました。

260:132人目の素数さん
19/12/26 18:38:23.54 mvnmdT7I.net
>>244
>各因子を分数として見ると、各々は異なるが、分子側全体、分母側全体として見ると、これらは数字の並べ替えに過ぎず、全て同じ値を持つ。
全く気づきませんでした、プログラムできればいいと愚考してましたので。

261:132人目の素数さん
19/12/26 18:45:38.70 mvnmdT7I.net
>>244
正解だと思うのですが
5/42+1/7+10/77+25/231=1/2
って偶然でしょうか?
>219の疑問は残ります。

262:132人目の素数さん
19/12/26 19:11:06.56 RCja5F+r.net
>>245
いつも楽しいレスをありがとうございます
>244が正解だと思います。

263:132人目の素数さん
19/12/26 19:24:21 RCja5F+r.net
A:現時点での勝率は3/7であと3勝が必要
B:現時点での勝率は4/7であと4勝が必要
勝率は通算成績で決まり現時点でA3勝B4勝である。

264:132人目の素数さん
19/12/26 19:28:03 S3aobCgr.net
>>249

>>244の内容は >>223の投稿時に作っていたものです。数字の羅列が主なので、結論としては同じ、>>223
のみの投稿にしました。しかし、その内容や考え方は、>>229で生かされています。
よかったら、過去の投稿も読み直してみてください。

偶然か? との疑問がありましたが、一定の条件下で起こる必然現象でしょう。
これが「ポリアの壺問題」の帰結です。

あるいは、もっとシンプルに、次のような思考実験が考えやすいかもしれません。

直方体型の水槽がある。水槽には水が入れられており、水は「(垂直な平面による)仕切り」により
二つの区画に分けられている。この仕切りは、自由に動くようになっている。単に位置が可変というだけでは無く、
二つの区画に分けられている水の「高さ」が同じになるように、自動的に動くようになっている。

この水槽に水を入れ、外に置いておいた。昨夜、雨が降っていたので、水槽に入っている水の量が増えているはずだが、
仕切りの位置は、どうなっているだろうか? 
(仕切りの右側に雨粒が入るか、左側に入るかは、各区画の面積に比例、つまり、各区画に入っている水の量に比例する)

答え ほとんど動いていないはず。

265:132人目の素数さん
19/12/26 22:38:05.18 YVgI+UyN.net
そう?
どっちかにビチャってよっちゃってそうだけど。

266:132人目の素数さん
2019/12/2


267:6(木) 22:39:20.70 ID:1POxvSt7.net



268:132人目の素数さん
19/12/26 23:26:25.52 YVgI+UyN.net
30°

269:132人目の素数さん
19/12/27 00:18:11.16 HDIPEZAp.net
>>253
じゃ、こんなのはどう?
交換してもらった名刺が1000枚ある。五十音順に並べることにした。
100枚ほど並べ終わった時、何を思ったか、自分の名刺も加えてみた。
上から30%位の位置に挿入された。
さて、1000枚全てを並べ終わったとき、自分の名刺は、どの辺りにあるか?

270:132人目の素数さん
19/12/27 00:39:47.46 E3VxHfur.net
>>254
どうするのかね?

271:132人目の素数さん
19/12/27 00:48:43.03 m7wze3DH.net
>>256
それならいけるのかな?
しかし本問は最初の発生した偏りが系に正帰還して偏りを拡大させていくモデルだからなぁ。
例えば今回は(a,b)の状態から始めてa+b-1回目の時点では
Aが起こる回数がa回以上の確率
=Bが起こる確率がb回以上の確率
=1/2
という事が成り立つようだけど、この状態は本当にずっとたもたれるのかな?
例えばna+nb-1回やったとき相変わらず
Aが起こる回数がna回以上の確率
=Bが起こる確率がnb回以上の確率
=1/2
という関係はたもたれ続けるのかな?
yesのような、noのような‥‥

272:132人目の素数さん
19/12/27 01:06:52.23 m7wze3DH.net
今(a,b,n)=(2,1,2)でやってみたらわずかにaが4回以上起こる確率の方がbが2回以上起こる確率を上回ってる気がする。
手計算だから間違ってるかもだけど。
やっぱり偏りは拡大していく気もする。

273:132人目の素数さん
19/12/27 04:08:56.09 FqqlMh9P.net
正弦定理から
sine(?) = sine(36°)/sine(72°)*sine(84°- ?)
これをコンピュータで解いて?=30

274:132人目の素数さん
19/12/27 04:35:00 FqqlMh9P.net
>>260
角度を計算するRのスクリプト
foo <- function(x=36,y=24){
sine <- function(x) sin(x/180*pi)
f <- function(z) sine(z) - sine(x)/sine((180-x)/2)* sine(180-y-(180-x)/2-z)
round(uniroot(f,c(0,180))$root,3)
}

> foo(36,24)
[1] 30

275:132人目の素数さん
19/12/27 07:56:21.74 FqqlMh9P.net
>>254
複素平面で考えた方が楽かな?

276:132人目の素数さん
19/12/27 13:18:10.46 oS4+axdd.net
複素数平面でもベクトルでも三角比でも初等幾何で解く事にこだわらなければ似たり寄ったり。
でも初等幾何のテクニック勉強するのってどっかで見切りつけないとキリないんだよな。

277:132人目の素数さん
19/12/28 03:32:40.72 CpgIRcQ2.net
URLリンク(i.imgur.com)

278:イナ
19/12/28 04:12:27.40 GFHwIJTI.net
>>245記憶にございません。俺の脳が勝手に携帯のボタンを押したんだ。意味わかんない。メネラウスとかのほうがいい。
 ̄ ̄]/\______∩∩_
____/\/ ,,、、(___))|
 ̄ ̄\/ 彡-_-ミっ / |
 ̄ ̄|\_U,~⌒ヽ、| |
□ | ∥ ̄ ̄U~~U | / )
____| ∥ □ ∥ |/ /|
_____`∥______∥ノ / |
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄∥ |
□  □  □  ∥ /
__________________∥//
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄_/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__/__

279:イナ ◆/7jUdUKiSM
19/12/28 04:44:49 GFHwIJTI.net
>>265
>>254ありきたりな正弦定理はおもしろくないんでこのスレじゃNG。
いよいよメネラウスやっとくれ。

280:イナ
19/12/28 05:01:41.28 GFHwIJTI.net
>>266
84-?=24+?
2?=84-24
?=60/2=30
疑う余地はない。
その前の二等辺三角形をメネラウスでお願いし


281:ます。



282:132人目の素数さん
19/12/28 08:39:20 th9xRFNv.net
>>266
俺はありきたりな偏角とプログラムを使うとこういうのが図示計算できて楽しめた。

URLリンク(i.imgur.com)

283:132人目の素数さん
19/12/28 08:44:27 2Pab3NM0.net
>>263
パターンは絞れるんじゃない?
正三角形を作るとか

284:132人目の素数さん
19/12/28 08:56:38.74 th9xRFNv.net
>>264
0.851606

285:132人目の素数さん
19/12/28 09:04:29.72 prr1M5RM.net
>>269
それが数学を勉強していくのに不可避ならやるんだけど、少なくともこの手の問題は解答するためのアルゴリズムも見つかってるので数学の研究のメインに上がってる事もないし。
ソロバンみたいなもの。
勉強して無駄とは言わないが、あまり不必要に難しすぎるやつやってもしょうがない。

286:132人目の素数さん
19/12/28 10:46:59.12 7xarnjVq.net
>>264
ω=exp(2π/3i)、log(x)を0以下の実数を除くところで定義するとして
Σω^n/n=-1/ωlog(1-ω)‥‥①
Σω^(2n)/n=-1/ω^2lig(1-ω^2)‥‥②
(ω①-②)÷(1-ω)=答え

287:イナ
19/12/28 12:59:15.34 GFHwIJTI.net
>>267
>>254題意の図を内角が左上A72°左下B96°右下C78°右上D84°となるよう4頂点を決め、ABの中点をE、ADの延長線とBCの延長線の交点をF、ACとBDの交点をGとし、BAの延長線とCDの延長線の交点をH、AE=BE=1、BG=xとすると、
ADは一辺ABの正五角形の対角線だから1+√5
AD=BD=BC=1+√5
Aを起点にメネラウスの定理より、(AG/GC)(CB/BF)(DDA)=1―①
Bを起点にメネラウスの定理より、(BG/GD)(DA/AF)(FD/DB)=1―②
F(12°)を起点にメネラウスの定理より、―③
H(6°)を起点にメネラウスの定理より、―④
①②③④より、x=2
△ABGはAB=GBの二等辺三角形で∠BAG=∠BGA
84°-?=?+24°
2?=84°-24°=60°
∴?=30°
②と③が同じになったから④が必要で、これでできるだろう。正弦定理でもいいよ。x=2が言えれば。けどチェバとメネラウスだけで解けたらおもしろい。

288:イナ
19/12/28 13:46:27.37 GFHwIJTI.net
>>273
AB=GBさえわかれば答えは出る。メネラウスと考えるのが自然。AE=BE=1として、AD=BD=BC=1+√5
実際に比がわからなくても△ABGは二等辺三角形になるしかない。時間なければx=2しかない。チェバとメネラウスで二等辺三角形でいい。
∠BAG=∠BGA
84°-?=24°+?
2?=84°-24°
?=30°あってる。

289:イナ
19/12/31 05:45:20.19 DdtTHOH4.net
>>274わかったからこっちにも書く。
>>254別解。
折れ線の左上をA、右上をB、左下をCとすると、
AB=BC、∠ABC=36°
AB=BC=CD、∠BCD=36°となるDをとり、
AB=BC=CD=DE、∠CDE=36°となるEをとると、
AB=BC=CD=DE=EA、∠DEA=36°となる。
∠BAEの二等分線を引くとCDと直交し、折れ線の端に達するから、
?=90°-(36°+24°)
=30°
∴示された。

290:132人目の素数さん
19/12/31 07:46:34.16 rv0BC6P6.net
東京で高さ10mの垂直な梯子に上ると、地上にいる人より何秒早く初日の出を見ることができるか。
【条件】
地球を半径6400kmの完全な球体とする。
ビルなどの建物はない。
東京を北緯35度とする。
自転軸は23.4度傾いている。
公転による影響は無視する。
観測者の身長は無視する。
1日を23時間56分4秒とする。

291:132人目の素数さん
19/12/31 11:39:22.11 NB4wsDH9.net
>>276
地球半径をRとすると、高さhのところから地�


292:ス線を見下ろす 角度θは、地心と観測者と地平線を結ぶ直角三角形を作れば tanθ=√(2hR-h^2)/R  h/R<<1, θ<<1で近似すれば θ≒√(2h/R) ラジアンを秒角に直せば、 θ(秒角)≒2.06×10^5√ (2h/R) h=10m,R=6.4×10^6mを代入して計算すると θ≒364秒角 (ちなみに、地平線までの距離が√(2hR)≒3600√h メートル  ってのは、豆知識) あとは、しちめんどくさいので、だいたいで。 太陽の赤緯は無視して、緯度φでの、相当する日周運動の 回転角だけ求めると、 θ/cosφ ≒387秒角 地球の自転の角速度は360度/日=15度/時=15秒角/秒 で近似できるので、 387/15≒26秒だけ早く初日の出を拝める。



293:132人目の素数さん
19/12/31 11:41:59.06 NB4wsDH9.net
>>277
あ、間違えた。φに23.4度を入れちゃってたわ。 35度で計算
しなおすと、
θ/cosφ≒444秒角なので、
444/15=30秒だけ早く初日の出を拝める。

294:イナ
19/12/31 14:41:15.29 DdtTHOH4.net
>>275
30秒で10mは登れると思うけど、木登りするよりは地上で30秒待って拝むかな。
狼男が何人いるかが気になる。だれか明確な答えを出してほしい。スレは20ぐらいで埋もれてる。
三日目終わって村人全員死んだらしい。毎夜12時に集まって狼男をつきとめようとしたみたいなんやが衆人監視のもとやと襲いよらへんらしい。
でも変身したらわかるはずやし、俺は村人の4人に1人が狼男や思うんやが、正解はなんなのか、だれかが出した3人という答えはなんなのか、解答する村人が俺以外死んだのかおらんなってしもて、今なぞのまま年が暮れようとしとります。

295:132人目の素数さん
19/12/31 15:42:46 SaGC8i82.net
月5,000円で授業や問題集でわからない問題を当方に質問し放題の教室をやっています。

●全国どこにお住まいでもご対応いたします!
●振込、アマギフ払い可能!(アマギフ払いだとコードをメールで送信するだけです。よって、名前バレ・親バレの心配がありません。)
●すぐにご対応いたします!(授業で当てられて翌日に答える必要がある場合などです。)
●模擬試験のネタバレの答案作成可能!(模擬試験の成績が推薦に影響する場合などに有効です。)
●1ヶ月無料!ご満足いただけない場合は、その月で解約可能です。

Yahoo知恵袋などの質問サイトもありますが、間違った回答が来たり、回答が来てわかりにくいところがあったときにすぐ聞けなかったり、返信がいつ来るかわからなかったりするなど多くの問題があります。

私は、国立理系、上位私立文系合格実績があります。

pyosimu@choco.laまでご連絡ください。よろしくお願いします。

296:
20/01/02 04:05:49.59 IJJUUF2Y.net
>>279
>>253せやろ。俺も何べんか言うたんやで。Bのほうにビチャッて寄ってまうやんなぁ。

297:132人目の素数さん
20/01/02 08:16:02.11 9Uqz14kt.net
やっと>>223できた。
めちゃめちゃ難しい解答になったけど。
今日帰ったらできた解答あげます。

298:132人目の素数さん
20/01/02 10:12:05.15 o7xDKcDw.net
災害が発生していたるところに重症被災者がいる。消防署から出動して救急センターに患者を搬送する
消防署から救急センターへの距離は100km 救急車のガソリンは50L、患者を乗せない状態では燃費は10km/L、患者を乗せての燃費は5km/Lである
患者を救える地域の面積はいくらになるか?

299:
20/01/02 10:23:45.53 OBB1psO6.net
3Lあれば10km往復できるという意味?

300:
20/01/02 10:25:39.41 4tfWuOZN.net
いや違う。
消防署と救急救命センターは離れてるのか。

301:132人目の素数さん
20/01/02 11:11:31.37 U5AK8YkK.net
燃費が同じなら消防署と病院を焦点とする楕円内になる
ところをひねったわけね。
現実問題としてはガソリンの残量でも燃費が変わるけど。

302:132人目の素数さん
20/01/02 11:38:54.19 o7xDKcDw.net
>>286
そういうことです。

303:132人目の素数さん
20/01/02 11:42:20.76 o7xDKcDw.net
>>286
>ガソリンの残量でも燃費が変わる
どんな関係になるのでしょうか?
それが分かればそれを組み入れて計算してみたいので。

304:132人目の素数さん
20/01/02 12:02:49.81 o7xDKcDw.net
>>285
消防署から被災地に赴いてそこで被災者を収容して救急センターに送るという設定。

305:132人目の素数さん
20/01/02 12:41:20 o7xDKcDw.net
>>288
ちょっと、調べてみた

例えば、ガソリンタンクが60Lだとすると、レギュラーガソリンの1Lの重さは0.75kgなので、60Lが満タンになると45kg、半分の30Lだと22.5kgとなる。

 その差22.5kgがどのくらい燃費が悪化するのか気になるところだが、実は満タンにした場合と半分にした場合とでは、0.84%ほどしか燃費は悪化しないのだ。

URLリンク(bestcarweb.jp)

306:132人目の素数さん
20/01/02 12:50:42.72 hdd+306f.net
カウンタックみたいに軽量本体+大容量タンク+ガソリンバラ撒きだと案外無視できないんでね

307:
20/01/02 12:53:17.79 75BuHvKa.net
>>289
理解しますた。
つまりa=100kmとして
極方程式
r/10+√(r^2+a^2-2arcosθ)/5≦50
を満たす領域の面積を求めよ。
ですな。

308:132人目の素数さん
20/01/02 13:35:14.30 o7xDKcDw.net
消防署を原点、被災地の座標を(x,y)として
√(x^2+y^2)/10 + √((x-100)^2+y^2)/5 ≦ 50
なのはわかるけど、
極形式は???

309:132人目の素数さん
20/01/02 14:33:35.44 o7xDKcDw.net
方程式 √(x^2+y^2)/10 + √((x-100)^2+y^2)/5 = 50をWolfram先生に解いてもらって
y=f(x)の形にして、積分して面積を求めると
> integrate(y,-100,700/3)$value*2
[1] 83693.05
1億回モンテカルロシミュレーション結果は
> k=1e8 ; mean(replicate(k,gc(runif(2,-Gas*FE1,Gas*FE1))))*(2*Gas*FE1)^2
[1] 83691.74

310:132人目の素数さん
20/01/02 16:04:45.98 U5AK8YkK.net
消防署から患者までの距離と患者から病院までの距離の2倍の和が、
消防署からたどり着ける最大距離に等しい地点の内側にあればいい。
なので、到達最大距離が病院までぎりぎり行ける程度だと、病院周
りのほぼ円形の領域をカバー(消防署からの距離はほぼ一定だから)。
到達最大距離が病院のはるかむこうまで行けるくらいあると、中間
点を中心にしたほぼ円形の領域をカバー(どっちの地点からの距離
もほぼ一定だから)。
最大到達距離が病院までの距離の2倍に等しい場合が一番円形から
はずれそう。

311:
20/01/02 17:05:21.21 Rnj9mFDn.net
wolfram先生に書いてもらうとほぼ円なのはわかる。
でも円じゃないよね?
多分。

312:イナ
20/01/02 19:08:08.94 IJJUUF2Y.net
>>281
>>28


313:3なんで円なのかわからんな。牧草を食む山羊か? 杭につながれた。 救命救急は急がないかんのだろ。せやで速い計算以外はいらんだよ。可能性のみ考えよう。 救急車のガソリンは50L。めいいっぱい使うとして、行きが(50/3)Lで(500/3)㎞、現場から救急センターまでが(100/3)Lで(500/3)㎞の直線軌道。だれがそげなときに円形に迂回するもんか。二等辺三角形が描ける。 消防署と救急センターの中間地点は双方から50㎞の地点。その道から垂直に、ピタゴラスの定理により、√{(500/3)^2-50^2}㎞遠ざかった地点が救急できる最遠方地。 ∴救える面積=50×√{(500/3)^2-50^2} =50^2√{(100-9)/9} =2500√91/3 =7949.49335(k㎡) 0.01k㎡=1ヘクタールだから、79万4949ヘクタール救える。車道まで搬送してくれ。それが条件で。



314:132人目の素数さん
20/01/02 19:56:11.71 U5AK8YkK.net
>>296
ガソリン20リットルという条件でやってみそ。(消防署からの
最大到達距離が病院までの距離の2倍ってケース)
カスプができるから。

315:132人目の素数さん
20/01/03 00:42:42.99 WWRiI94b.net
>>298
やってみました。
URLリンク(i.imgur.com)

316:
20/01/03 01:06:05.99 FW913/Tp.net
>>297
>>299まさに8000k㎡ぐらいじゃね? 80ヘクタール行くか行かないかぐらいじゃないかな?

317:
20/01/03 01:10:11.85 FW913/Tp.net
>>300訂正。
80ヘクタール→80万ヘクタール

318: 【大吉】 【43円】
20/01/03 05:04:55 S7a9Iuic.net
>>289
ヒントギボン。
どうあがいても楕円積分になるorz。

319:132人目の素数さん
20/01/03 06:50:06.38 9SjLQpJv.net
一辺の長さが1の正方形が重ならずに7個入る最小の正方形の一辺の長さはいくらか

320:132人目の素数さん
20/01/03 07:19:37.42 WWRiI94b.net
>>302
すいません、確固たる正解すら持ってない自作問題なので何がヒントになるのかすらわかりません。

321:132人目の素数さん
20/01/03 11:21:51.29 WWRiI94b.net
>>298
ガソリン量を10から30まで救えるエリアを描かせてみました。
URLリンク(i.imgur.com)

322:132人目の素数さん
20/01/03 12:11:23.26 WWRiI94b.net
50まで増やしてみた。
URLリンク(i.imgur.com)

323:132人目の素数さん
20/01/03 12:22:08.26 FJq0gSax.net
>>294
俺もwolfram先生の助けでやってみたけど(y^2に関する2次方程式になるから、それを解くだけ)
y = ± (1/3 sqrt(-9 x^2 + 2400 x - 10000 (2 sqrt(6 x + 2200) - 113)))
というグラフの内部。
-100≦x≦700/3で積分するとたしかに83693.046になるね。
グラフを描かせてみると、長半径500/3,短半径160で中心が (200/3,0 )にある楕円で極めて
よく近似できる(求める領域より若干膨らんでいるが)。この楕円の面積は83776で、誤差0.1%未満。

324:132人目の素数さん
20/01/03 12:24:29.45 FJq0gSax.net
>>305,306
乙です。

325:
20/01/03 13:04:55.11 /G0ULS+T.net
結局面積はどうあがいても完全楕円積分になる。
一般解は楕円関数使わないと表示できない。
パラメータに特殊な値を入れた場合特殊値が綺麗な値で出る事もあるだろうけど作者が適当な直で作ってみたという問題で偶然キレイな特殊値になる事は考えづらいね。

326:132人目の素数さん
20/01/03 13:09:36.78 WWRiI94b.net
>>296
ガソリン50Lで描画すると横径(消防署と病院を結ぶ方向) 360、 縦径347.5505の結果が返ってきたから、円じゃないね。

327:132人目の素数さん
20/01/03 13:53:16.17 FJq0gSax.net
>>309
とりあえず、カスプができる形(ガソリン20l)の場合には極座標形式で
r≦800/3{cosθ- 1/2)
と、きれいに書ける。こういう曲線って名前あるんだっけ?
面積も高校数学レベルで積分できて
∫[-π/3->π/3] (800/3)^2(cosθ-1)^2dθ=(800/3)^2(2π-3√3)

328:132人目の素数さん
20/01/03 13:59:28.22 FJq0gSax.net
>>311
写し間違えた、面積は
∫[-π/3->π/3] (1/2)(800/3)^2(cosθ-1)^2dθ=(1/8)(800/3)^2(2π-3√3)

329:
20/01/03 14:01:28.49 /G0ULS+T.net
>>309
それならパスカルの蝸牛曲線
URLリンク(ja.m.wikipedia.org)

330:132人目の素数さん
20/01/03 14:02:32.66 FJq0gSax.net
>>310
だから、楕円でよく近似できる。つ>>307

331:311
20/01/03 14:06:30.62 FJq0gSax.net
>>313
へー、パスカルのカタツムリかぁ。
lが負だから、内側のほうに対応するね。
ありがとう。

332:132人目の素数さん
20/01/03 14:40:00 Xx1MBzdP.net
>>313
か…かぎゅう曲線 (鼻ホジ)

333:132人目の素数さん
20/01/03 15:28:18.21 WWRiI94b.net
ガソリン20L曲線とパスカルの蝸牛を重ねてみた。
URLリンク(i.imgur.com)

334: 【大吉】
20/01/03 15:38:42 FW913/Tp.net
>>301
>>303
3個のブロック直列で並べその両サイドに2個のブロックを並べると、
2個のブロックと3個のブロックの対角線はピタゴラスの定理により、
最小限√(3^2+2^2)=√13ないといけない。
一辺3の正方形より小さくはできない。
底辺2高さ3の平行四辺形が一辺3の正方形に入らないのと同じぐらいできない。
∴最小の一辺の長さは3

335:132人目の素数さん
20/01/03 15:54:31 CTEYwEEV.net
3っぽいのはともかく、↑って解答になってるの?

336:132人目の素数さん
20/01/03 16:22:52.20 WWRiI94b.net
ガソリン20 L のときは
√(x^2+y^2)/10 + √((x-100)^2+y^2)/5 = 20から x=rcosθ y=rcosθとして
r について r/10 + 1/5 sqrt((r cos(θ) - 100)^2 + r^2 sin^2(θ)) = 20 を解けば
r = 400/3 (2 cos(θ) - 1)
んで、パスカルの蝸牛になるのか。
ようやく、理解できました。

337:
20/01/03 17:17:21.61 /G0ULS+T.net
イナの解答で数学の世界で通用するものがでた事はない。

338:
20/01/03 17:29:56.03 Ir9tB0mI.net
wikiによると>>303の答えは3みたいだけどまぁ簡単な面白い証明があるのかないのかはどうなんだろうねぇ?
URLリンク(en.m.wikipedia.org)

339:132人目の素数さん
20/01/03 17:33:59.69 Xx1MBzdP.net
>>322
( ゚∀゚)つURLリンク(www2.stetson.edu)

340:
20/01/03 17:52:08.58 FW913/Tp.net
>>303は前>>318で俺が証明した。

341:
20/01/03 18:06:57.30 /G0ULS+T.net
相変わらず馬鹿だなぁ

342:哀れな素人
20/01/03 19:04:23.94 9TDiWl+d.net
>>303の答え=3
なぜなら、なるべく狭い範囲に、重ならないように、並べるためには、
少なくともどこか1箇所は、縦方向(あるいは横方向)に、
3個並べなければならないが、その場合、どうしても、
1辺の長さは3になってしまうから。
あるいは、なるべく狭い範囲に、重ならないように、並べるためには、
円に近いような並べ方をするしかないが、
その場合、>>318のような並べ方をするしかなく、
その場合、辺の長さをxとすると、3≦x≦5√2/2

343:311
20/01/03 19:30:33.87 FJq0gSax.net
>>283
っちゅうことで、問題をこう変えてはいかが?
砂漠の基地Aからもうひとつの基地Bに向かって出かけた戦車がGPSの故障で
進路を見失ってさまよった挙げ句にガ�


344:X欠で止まってしまった。別の戦車で 基地Aからこの戦車へ救助に向かい、燃料を分け与えて一緒に基地Bに行く ことになった。しかし、戦車にはAB間をちょうど往復できるだけしか燃料 は積めない。AB間の距離をRとして、Aを原点とする極座標形式で救出可能な 領域を示し、その面積をRを使って表しなさい。 ただし、戦車の燃費はいずれも同じものとする。



345:311
20/01/03 19:32:09.44 FJq0gSax.net
>>316
かぎゅう曲線で読みはあってる。

346:
20/01/03 19:51:11.31 /G0ULS+T.net
>>223
以下を通じて確率過程(Xi,Yi)は
P((X(i+1)Y(i+1))=(c,d) | X0,Y0,‥,Xi=a,Yi=b)
=P(X(i+1),Y(i+1)=(c,d) | (Xi,Yi)=(a,b))
=a/(a+b) if (c,d)=(a+1,b)
. b/(c+d) if (c,d)=(a,b+1)
. 0 otherwise
をみたす離散Markov過程とする。
F(a1,‥,ap; b1,‥,bq;x)はgeneralised hypergeometric function とする。(Fの下付き文字は略する。)
(a~b)はa,a+1,‥,bの赤とする。例えば(3~5)=3・4・5=60である。
補題1
任意のa,b,m,n,iに対し
P(∃j (Xj,Yj)=(a+m,b+n) | (Xi,Yi)=(a,b))
= C[m+n,m](a~b+m-1)(b~b+n-1)/(a+b~a+b-1)
(∵) 容易。□
補題2
任意のa,b,cに対し
P(∀i Xi<c | (X0,Y0)=(a,b)) = 0
(∵) 補題1より得られる。□
補題3
任意のa,b,n≧0に対し
P(∃i Xi<2a, Yi=2b | (X0,Y0)=(a,b))
=Σ[n≧0]P(∃i (Xi,Yi)=(2a-1,b+n) X(i+1)=Xi+1 | (X0,Y0)=(a,b))
(∵) 補題2による。□
主張4
任意のa,bに対し
P(∃i Xi<2a, Yi=2b | (X0,Y0)=(a,b))
=(a+b-1)!(a~2a-1)(b~2b-1)/(a!b!(a+b~2a+2b-1)
. a F(2b, a+b, 1; b+1,2a+2b; 1)
(∵) 補題3 の右辺を整理するだけである。□
定理5
任意のa,bに対し
P(∃i Xi<2a, Yi=2b | (X0,Y0)=(a,b))
=P(∃i Xi=2a, Yi<2b | (X0,Y0)=(a,b))
=1/2
(∵) 主張4により
a F(2b, a+b, 1; b+1,2a+2b; 1)
=b F(2a, a+b, 1; a+1,2a+2b; 1)
を示せば十分である。
ここでgeneralized hrpergeometric functionの積分表示とEulerの公式により
a F(2b, a+b, 1; b+1,2a+2b; 1)
= a Γ(b+1)/(Γ(1)Γ(b)) ∫t^(1-1)(1-t)^(b-1)F(2b,a+b;2a+2b;t)dr
=ab ∫(1-t)^(b-1)F(2b,a+b; 2a+2b;t)dt
=ab ∫(1-t)^(b-1)(1-t)^(a-b)F(2a,a+b; 2a+2b;t)dt
と変形されるが、この変形の逆を辿って主張は得られる。□
URLリンク(en.m.wikipedia.org)
URLリンク(en.m.wikipedia.org)

347:132人目の素数さん
20/01/03 20:27:52.22 WWRiI94b.net
>>328
R使って書いてみた。
URLリンク(i.imgur.com)

348:132人目の素数さん
20/01/03 20:28:36.69 WWRiI94b.net
>>327
ありがとうございます。やってみます。

349:311
20/01/03 20:58:56.58 FJq0gSax.net
戦車を問題に出すと、日教組から文句が出るかもね。
連中は、ぐんくつの音がどうのとかで、幻聴が聞こえて大変らしいw

350:132人目の素数さん
20/01/03 21:15:49.93 WWRiI94b.net
>>327
r <= 4/3R(2cos(θ)-1)
8/9 (2 π - 3 √3) R^2

351:132人目の素数さん
20/01/03 21:17:14.27 R+svt1Sm.net
日帝打倒革命軍の戦車ならきれいな戦車だから問題ないんでね

352:132人目の素数さん
20/01/03 21:39:33.47 mOY35G5X.net
La+ @QiDUiNSkTzJpSff
0の0乗は1ですよ!
俺が知ってる中で唯一0だけから0以外を作り出す方法
午前0:53 2020年1月3日

353:132人目の素数さん
20/01/04 00:49:20.95 9B2dGZZ9.net
任意の自然数nに対し, 区間[0,4]で定義された関数f_n(x)を次のふたつによって定める
1. f_1(x) = x(x-3)²/4
2. f_{n+1}(x) = (-1)^{[n/3]+[(n+2)/3]} ・ f_1(f_n(x))
(ここで [


354:x] は x を超えない最大の整数) このとき, xの方程式 f_2020(x)=a が [0,4] に少なくとも1つの実根をもつための実数 a の条件を求めよ



355:132人目の素数さん
20/01/04 01:19:48.78 1gxiLzhY.net
解く気が全く起きない問題

356:イナ
20/01/04 02:29:22.87 9c3BmtC3.net
>>324
>>303
6つにしたら3よりちっさなるかなぁ?

357:イナ
20/01/04 03:15:30.16 9c3BmtC3.net
>>338
>>303
7つの正方形を並べた発想は面白い。けど対角線とか斜めの長さの意外な逆転現象とか面白い部分が見あたらない。
それとも面白さに気づいてないだけなのか。
まさか立方体におさめよという問題でもあるまいし。
5つにしたら一辺2√2の正方形におさまる。新しい発見があったらまた報告したいと思います。
2√2=2.82842712……<3

358:132人目の素数さん
20/01/04 05:39:04.15 OE5Ws6/k.net
>>335
{0}=1

359:イナ
20/01/04 08:11:11.37 9c3BmtC3.net
>>339
>>303それとも一個一個微妙に角度を変えることで、わずかに3より小さくした一辺2.9いくつの正方形におさまるというのか。

360:132人目の素数さん
20/01/04 10:16:31.19 XZ9geCBY.net
以下の条件を満たす立方体と平面の組は存在するか:
立方体の各頂点と平面の距離が0,1,2, .., 7である

361:132人目の素数さん
20/01/04 10:34:38.61 p/18DjXS.net
>>335
0^x =0
x^0=1
0^0=1とした方が辻褄が合うことが多い

362:132人目の素数さん
20/01/04 10:40:27.17 73ePCfYz.net
問、1からnまでの自然数をランダムに並べ大きな桁の数を作るとき、平方数になるものはあるか。ただし、nは2以上とする。
例、n=2のとき、12と21は平方数ではない。
n=3のとき、123と132と213と231と312と123は平方数ではない。
n=12のとき、123456789101112や121110987654321などは平方数?

363:132人目の素数さん
20/01/04 10:47:05.56 OE5Ws6/k.net
>>344
つまんないかな

364:!omikuji !dama
20/01/04 10:54:59.73 nstnR/M9.net
頂点を(±1,±1,±1)としてよい。
この点をP±±±とする。
ベクトルnで
n・P---:P-++:P+-+:P--+=-7:5:3:-1
となるものが存在すれば条件をみたす図形は存在する。
n=(x,y,z)とすればこれは
-x-y-z:-x+y+z:x-y+z:x+y-z=-7:5:3:-1
は解を持つから求める図形は存在する。

365:132人目の素数さん
20/01/04 10:58:27.67 j99vM0NN.net
>>344
1からnまでのn個(n≧2)の自然数を順不同に並べてできる自然数の中に
平方数となるものはあるか?
ってことね。とりあえずn=4のときにもないな。

366:132人目の素数さん
20/01/04 11:11:46.75 XZ9geCBY.net
>>347
n=8のときは73256481,34857216,81432576,13527684,65318724かな

367:132人目の素数さん
20/01/04 11:18:53.90 XZ9geCBY.net
>>347
n=9: 30個の解[714653289,375468129,361874529,..]
n=10: [57926381041,24891057361,28710591364,75910168324,59710832164,27911048356,14102987536]
これ以降は制約が強くなるから減っていきそうだけど…

368:132人目の素数さん
20/01/04 14:40:52.17 p/18DjXS.net
>>349
n=9のとき 確かに30個ありました。
> apply(permn[re,],1, function(x) sum(beki*x))
[1] 139854276 152843769 157326849 215384976 245893761 254817369 326597184
[8] 361874529 375468129 382945761 385297641 412739856 523814769 529874361
[15] 537219684 549386721 587432169 589324176 597362481 615387249 627953481
[22] 653927184 672935481 697435281 714653289 735982641 743816529 842973156
[29] 847159236 923187456

369:132人目の素数さん
20/01/04 14:51:29.96 p/18DjXS.net
0から9までを並べかえると10桁の平方数は
> apply(permn[re,],1, function(x) sum(beki*x))
[1] 1026753849 1042385796 1098524736 1237069584 1248703569 1278563049 1285437609
[8] 1382054976 1436789025 1503267984 1532487609 1547320896 1643897025 1827049536
[15] 1927385604 1937408256 2076351489 2081549376 2170348569 2386517904 2431870596
[22] 2435718609 2571098436 2913408576 3015986724 3074258916 3082914576 3089247561
[29] 3094251876 3195867024 3285697041 3412078569 3416987025 3428570916 3528716409
[36] 3719048256 3791480625 3827401956 3928657041 3964087521 3975428601 3985270641
[43] 4307821956 4308215769 4369871025 4392508176 4580176329 4728350169 4730825961
[50] 4832057169 5102673489 5273809641 5739426081 5783146209 5803697124 5982403716
[57] 6095237184 6154873209 6457890321 6471398025 6597013284 6714983025 7042398561
[64] 7165283904 7285134609 7351862049 7362154809 7408561329 7680594321 7854036129
[71] 7935068241 7946831025 7984316025 8014367529 8125940736 8127563409 8135679204
[78] 8326197504 8391476025 8503421796 8967143025 9054283716 9351276804 9560732841
[85] 9614783025 9761835204 9814072356
87個ありました。
0で始まるのは9桁で記述のとおり。

370:132人目の素数さん
20/01/04 15:02:05 XZ9geCBY.net
>>344の答えはn>=11ではそのような数は存在しない
だろうと予想するけど何とも言えないし証明も思いつかない

371:132人目の素数さん
20/01/04 15:28:52.09 OE5Ws6/k.net
>>352
だからつまんない
思いついてもはぁそうですかとなりそうで

372:132人目の素数さん
20/01/04 17:52:04.39 91U8H0Lr.net
>>313
森口・宇田川・一松 「数学公式I」岩波全書221 (1956) p.286
  第6.96図 リマソン(蝸牛線)
  r = a・cosθ±b

373:132人目の素数さん
20/01/05 01:06:55.23 vbFMRky1.net
>>336
>>337
f_nの値域をW_nとしてW_2020を求めればよい。
漸化式からW_(n+1)とW_nには関係があり、値域が規則的に変化することがわかる。
実際、-1の指数の偶奇に気を付けてW_1, W_2, W_3,...と値域を調べると、[0,1]→[-1,0]→[0,4]→[0,1]→[-1,0]...とmod3で循環する。
2020≡1 (mod3)より、W_2020=[0,1]
ゆえに0≦a≦1
秒で草

374:132人目の素数さん
20/01/05 08:03:22.23 yUCMEt/y.net
三辺の長さが自然数の三角形だけを考える。「任意の6の倍数の面積をもつ三角形は必ず存在する」は真か偽か。

375:132人目の素数さん
20/01/05 08:26:31.79 WnBhQYbd.net
>>344
結局これべらぼうに難問なのでは

376:イナ
20/01/05 09:07:32.58 Cssr3MUc.net
>>341
>>356
三辺が3:4:5の三角形は直角三角形でその面積は3・4(1/2)=6、すなわち命題は真。

377:イナ
20/01/05 09:18:47.13 Cssr3MUc.net
>>358
>>356
三辺が6,8,10なら面積は24で、12を飛ばした。
面積が12になる三辺は存在しないかもしれない。
三辺が5:12:13なら面積は5・12(1/2)=30いや、存在しないはず。命題は偽。

378:132人目の素数さん
20/01/05 10:37:05.05 ni7Es8bO.net
(1、√3)を(3、2)に移す行列を求めよ。
また逆に、(3、2)を(1、√3)に移す行列を求めよ。

379:132人目の素数さん
20/01/05 11:12:08 WnBhQYbd.net
>>360
a = -3/23 - (16 sqrt(3))/23, b = 8/(3 sqrt(3) - 2), c = 1/(2 - 3 sqrt(3)), d = 3/23 + (16 sqrt(3))/23
とすると
[a,b;c,d][1;√3]=[3;2]
[a,b;c,d][3;2]=[1;√3]
の両方を満たせる

380:イナ ◆/7jUdUKiSM
20/01/05 11:28:10 Cssr3MUc.net
>>359
>>360
(a b)(1  (a+b√3 (3
(c d) √3)= c+d√3)= 2)
a=3,b=0,c=2,d=0
(3 0)
(2 0)
(a b)(3 (3a+2b (1
(c d) 2)= 3c+2d)= √3)
a=1/3,b=0,c=√3/3,d=0
( 1/3 0)
(√3/3 0)

381:132人目の素数さん
20/01/05 15:12:12.32 k2hnKqS0.net
>>357
難問というだけだろうよ

382:132人目の素数さん
20/01/05 22:34:49.58 nuQeXmwr.net
平面に空いた半径1の円の穴を、辺の長さがaの正四面体が回転しながらくぐり抜けるときのaの最大値を求めよ。

383:イナ
20/01/06 01:27:32.79 o+CoSi8J.net
>>362
>>364
一辺aの正四面体の体積は(1/3)(√3/4)a^2(√2)a/(√3)
一方で底辺(√3/4)a^2,稜線1,高さhの三角錘が4つが頭寄せで終結した形ともとれるので、
h=√[{√(1-a^2/4)}^2-(1/3)^2(a√3/2)^2]
(1/3)(√3/4)a^2(√2)a/(√3)=4・(√3/4)a^2√[{√(1-a^2/4)}^2-(1/3)^2(a√3/2)^2]
a^2=216-72a^2
a^2=216/73
a=√(216/73)
=√15768/73
=1.72014654……

384:364
20/01/06 02:02:04.23 s19KxsdE.net
>>365
不正解です。
ヒント:3次方程式の解の公式を使います。

385:イナ
20/01/06 05:24:00.89 o+CoSi8J.net
>>365訂正。見えた!
a:√2=2:√3
a=2√2/√3
=2√6/3
=2・2.44949……/3
=4.89898……/3
=1.63299……(<1.72)さっきよりちっさなった。

386:364
20/01/06 05:52:38.80 s19KxsdE.net
>>367
残念ながら答えは遠のきました。
とりあえず紙工作で実験すれば2桁ぐらいの精度でわかると思います。
そして紙工作をいじってるうちに、くぐり抜けるための条件が閃くかも…

387:132人目の素数さん
20/01/06 05:55:47.47 vM9mJtxE.net
平面上に有限個の点があり、どの3点も同一直線上にない。
各点には少なくとも1本の線分がついていて、他の点と結ばれている。
このとき、「2本の交差する線分ABとCDがあれば、その2本を取り除き、線分ACとBDで置き換える」ことにする。
「」内の操作を無限に行うことは可能か?

388:132人目の素数さん
20/01/06 06:19:06.56 qpjRtnKS.net
交差が偶数個でなおかつ消失が奇数個ずつである時有限となる。
それ以外は無限

389:哀れな素人
20/01/06 11:18:45.98 56tqCV8z.net
>>364
イナ氏の答えa=2√6/3 が正解のような気がするが。
回転しないでよいならa=√3の正四面体がくぐり抜けられるが、
題意を考えると、半径1の球�


390:ノ内接する正四面体の一辺の長さはいくらか、 という問題と同じだから、a=2√6/3となるはずだが。




次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch