19/11/09 06:50:09.05 aIAMZK1h.net
>>649
つづき
This transformation preserves regularity but, in general, it does not preserve being Fuchsian.
The only invariant under the group of linear transformations (5) is the monodromy
group of the system.
Set Σ := CP1\{a1, . . . ,ap+1}. To define the monodromy group one has to fix a base
point a0 ∈ Σ and a matrix B ∈ GL(n,C). The monodromy group is defined only up to
conjugacy due to the freedom to choose a0 and B.
URLリンク(en.wikipedia.org)
Notes
2 V. P. Kostov (2004), "The Deligne?Simpson problem ? a survey", J. Algebra, 281 (1): 83?108, arXiv:math/0206298, doi:10.1016/j.jalgebra.2004.07.013, MR 2091962 and the references therein.
(上記と5章が微妙に違うな)
URLリンク(arxiv.org)
The Deligne-Simpson problem -- a survey
Vladimir Petrov Kostov
(Submitted on 27 Jun 2002)
The Deligne-Simpson problem (DSP) (resp. the weak DSP) is formulated like this:
{\em give necessary and sufficient conditions for the choice of the conjugacy classes Cj⊂GL(n,C) or cj⊂gl(n,C) so that there exist irreducible (resp. with trivial centralizer) (p+1)-tuples of matrices Mj∈Cj or Aj∈cj satisfying the equality M1.