19/11/08 07:51:39.50 9JDZmqGe.net
>>593
つづき
URLリンク(ja.wikipedia.org)
ゲージ理論(ゲージりろん、英: gauge theory)とは、連続的な局所変換の下でラグランジアンが不変となるような系を扱う場の理論である。
目次
1 概要
2 歴史
2.1 非可換ゲージ理論
2.2 数学におけるゲージ理論
3 ゲージ場
3.1 大域対称性と局所対称性
3.2 ファイバーバンドルを使った局所対称性の記述
3.3 ゲージ場
3.4 物理実験
3.5 連続体の理論
3.6 場の量子論
4 古典ゲージ理論
4.1 古典電磁気学
4.2 例:スカラー O(n) ゲージ理論
4.3 ゲージ場のヤン・ミルズラグランジアン
4.4 電磁気学の例
5 数学的定式化
5.1 接続による定式化
5.2 ヤン・ミルズ作用
6 ゲージ場の量子化
6.1 方法と目的
6.2 アノマリ
7 大域対称性
7.1 例
8 局所対称性
8.1 例
9 脚注
歴史
ワイル(Hermann Weyl)が、一般相対論と電磁気学を統一しようと、スケール変換(もしくは、ゲージ変換)の下の不変性が、一般相対論の局所対称性であろうと予想した。
量子力学の発展したのち、ワイル、フォック(Vladimir Fock)、ロンドン(Fritz London)が、スカラー要素を複素数値に置き換え、スケール変換を U(1) ゲージ対称性である相(phase)の変更に置き換えることにより、スケール(ゲージ)を変形した。
このことが、電荷を帯びた量子力学的な粒子の波動函数として電磁場を説明した。これがヴォルフガング・パウリ(Wolfgang Pauli)により1940年代に広められ、ゲージ理論として広く認識された最初であった。[1]
つづく