現代数学の系譜 工学物理雑談 古典ガロア理論も読む78at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 - 暇つぶし2ch45:か とかは結構重要に思うが、そういう大事な問題に答えている論文が見当たらない。 つまりまともな数学者からは終わってると看做されている領域で 実際終わってるのかもしれないが、しかし現在新たに書いてるひとたちもいて それはちょっと数学者のレベルではない、100年以上前の話を電子計算などに絡めて蒸し返しているだけの感じ。



46:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/20 07:39:37.71 f+LcfVi/.net
>>39
ID:1gpHuTQEさん、どうも。スレ主です。
レスありがとう
(引用開始)
>これは、当然素数5の群だから巡回群C5だが
>アーベルと、非アーベルに分けて
いやいや、C_5は唯一つしか存在しませんよ。当然アーベル群です。
(引用終り)
失礼しました
ここ、舌足らずだが、>>38の冒頭の「位数20」ってことですね、コンテキスト(文脈)として
「位数20」の群を、”アーベルと、非アーベルの場合に分けて”ということです
当然、位数が素数(例えば5)の群は、巡回群しかなく(下記)、巡回群はアーベルですから
(参考)
URLリンク(ja.wikipedia.org)
有限群
(抜粋)
与えられた位数を持つ群の個数
位数が素数 p である群は巡回群である:これはラグランジュの定理からわかるように、単位元でない任意の元は位数が p であるので、それによって生成される巡回群はそれ自身に一致するためである。
>>36より)
URLリンク(ja.wikipedia.org)
巡回群
(抜粋)
任意の巡回群はアーベル群となるので、しばしば加法的に記される。

47:{}
19/10/20 07:53:52.94 n9MZ9SCV.net
>>38
>>>これは、当然素数5の群だから巡回群C5だが
>>>アーベルと、非アーベルに分けて
>>39
>>いやいや、C_5は唯一つしか存在しませんよ。当然アーベル群です。
>>43
>ここ、舌足らずだが・・・
足らないのは舌じゃなくオツムだろw
>・・・「位数20」ってことですね
そもそも何がしたいのかワケワカラン

48:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/20 07:56:51.04 f+LcfVi/.net
>>40
>S_5の部分群を分類しても、それが実際に既約5次方程式のガロア群になりうるかはまた別の話。
"ガロアの逆問題" ですね
”All permutation groups of degree 16 or less are known to be realizable over Q [4]; the group PSL(2,16):2 of degree 17 may not be [5].”
なので、S_5の場合は、答えは”Yes”ですね
(参考)
URLリンク(ja.wikipedia.org)
ガロア理論
(抜粋)
逆問題
与えられた方程式(あるいは体のガロア拡大)のガロア群を計算する問題を "ガロアの順問題"、与えられた群をガロア群にもつ方程式(あるいは体の拡大)を構成する問題を "ガロアの逆問題" と呼ぶことがある。
URLリンク(en.wikipedia.org)
Galois theory
(抜粋)
Contents
6 Inverse Galois problem
Inverse Galois problem
Main article: Inverse Galois problem
The inverse Galois problem is to find a field extension with a given Galois group
As long as one does not also specify the ground field, the problem is not very difficult, and all finite groups do occur as Galois groups. For showing this, one may proceed as follows.
つづく

49:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/20 07:57:23.19 f+LcfVi/.net
>>45
つづき
URLリンク(en.wikipedia.org)
Inverse Galois problem
(抜粋)
Question, Web Fundamentals.svg Unsolved problem in mathematics:
Is every finite group the Galois group of a Galois extension of the rational numbers?
(more unsolved problems in mathematics)
Contents
1 Partial results
2 A simple example: cyclic groups
2.1 Worked example: the cyclic group of order three
3 Symmetric and alternating groups
3.1 Alternating groups
3.1.1 Odd Degree
3.1.2 Even Degree
4 Rigid groups
5 A construction with an elliptic modular function
Partial results
All permutation groups of degree 16 or less are known to be realizable over Q [4]; the group PSL(2,16):2 of degree 17 may not be [5].
All 13 non-Abelian simple groups smaller than PSL(2,25) (order 7800) are known to be realizable over Q. [6]
URLリンク(en.wikipedia.org)
Permutation group
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6)
置換 (数学)
以上

50:{}
19/10/20 07:58:58.75 n9MZ9SCV.net
>>40
>素数次の既約方程式が可解なとき
>そのガロア群がフロベニウス群になることは
>ガロア第一論文に出てくる。
それ、安達氏も言ってたな。
位数はp(p-1)で非可換群

51:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/20 08:00:05.28 f+LcfVi/.net
>>44
なんだ、おさる の ぼくちゃん かいw(^^
>そもそも何がしたいのかワケワカラン
そりゃ、わからんだろう、あんたにはw

52:{}
19/10/20 08:27:57.26 n9MZ9SCV.net
>>37
>S5の位数20の部分群が、非可換ということは、
>置換の積から直接確かめられるだろうね
>(やってないけど
やれよw まっさきに
馬鹿がダメなのは、手を動かして計算しないこと

53:{}
19/10/20 08:44:32.11 n9MZ9SCV.net
>>38
URLリンク(www.isc.meiji.ac.jp)
2008 年度卒業研究 S_3, S_4, S_5 の部分群の分類
散々引用してるけど、実は全然読めてないだろw
例えば、
S4の部分群で、位数6のものはS3だけしか出てこないが
S5の部分群で、位数6のものとしてS3のほかにC3×C2ともう一つ出てくること
に気づいてたか?
気付いてないだろ だから
>「位数20」の群を、”アーベルと、非アーベルの場合に分けて”
みたいなトンチンカンなこというんだよw
ついでにいうと、
対称群Snの位数20の部分群でC5×C4が現れることはあるよ
nがいくつなら確実に現れる、と言い切れるか?
ヒントはこのコメントの中にあるよ
ああ、俺ってホント親切だなwww

54:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/20 09:29:59.52 f+LcfVi/.net
>>47
無理しなくていいぞ
>位数はp(p-1)で非可換群
位数がp(p-1)だから非可換とは言えないだろう?
例えば、P=7で、p(p-1)=42=7x3x2
と分解して、各巡回群の直積
C7xC3xC2 を考えたら
明らかに、位数42で、アーベルだから
じゃ、位数42で非可換という条件なら?
下記、脇克志 フリーソフトのGAP使えば、すぐ出るらしい(^^
そのうちやってみるかw
でな
下記wiki”For every finite field Fq with q (> 2) elements, the group of invertible affine transformations x→ ax+b, a≠ 0 acting naturally on Fq is a Frobenius group. ”ってことよ
「 x→ ax+b」が、ガロア第一論文に出てくる
ガロア第一論文読んでないやつには、分からん話だよ
(参考)
URLリンク(fe.math.kobe-u.ac.jp)
URLリンク(fe.math.kobe-u.ac.jp)
URLリンク(www.math.kobe-u.ac.jp)
計算による数理科学の展開 (URLリンク(www.math.kobe-u.ac.jp))
URLリンク(www.math.kobe-u.ac.jp)
講義, 講演等のビデオを公開するプロジェクト
URLリンク(fe.math.kobe-u.ac.jp)
- 計算による数理科学の展開, Video Archives -
講演: 脇克志
内容: GAPを利用した有限群論
予備知識: 代数の初歩
ソース: 数学ソフトウェアとフリードキュメント 5 , 2007年9月20日(木), 東北大学
要約: KNOPPIX/MATH にも収録されている 代数計算ソフト GAPを使った有限群論を教える試みを紹介します。GAPを利用して有限群を実感させる講義を行った時の成功と失敗を通して、教育ツールとしてのGAPの利用方法を考えて行きます。
URLリンク(fe.math.kobe-u.ac.jp)
- 計算による数理科学の展開, Video Archives -
講演: 脇克志 数学ソフトウェアとフリードキュメント 5 , 2007年9月20日(木), 東北大学
URLリンク(en.wikipedia.org)
Frobenius group
(抜粋)
Examples
・For every finite field Fq with q (> 2) elements, the group of invertible affine transformations x→ ax+b, a≠ 0 acting naturally on Fq is a Frobenius group.

55:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/20 09:39:46.10 f+LcfVi/.net
>>49
>やれよw まっさきに
>馬鹿がダメなのは、手を動かして計算しないこと
何年か前に、このガロアスレを立ち上げる前に
5次の交代群の置換の表は、手で作った
位数20の置換の表も作った
(エクセルに打ち込んだのだが)
ただし、積の表まではやらなかった(^^;
それを、探せば、置換の積で、非可換はすぐ確認できるよ
(そのうち、GAPもやってみるかな
 この自主ゼミが一段落するか、あるいは自主ゼミ中に時間取って)
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%BC%8F%E5%87%A6%E7%90%86%E3%82%B7%E3%82%B9%E3%83%86%E3%83%A0)
GAP (数式処理システム)

56:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/20 09:46:12.33 f+LcfVi/.net
>>42
(引用開始)
前スレID:ospgeXvi氏が可解5次方程式を「分類する」という
問題意識を持っていたが、単に分類するだけでは面白くない。
むしろ「パラメトライズする」ような数学構造を見つけることが重要なのでは。
それでたとえば、中間体MとしてQ上ガロア群C_4またはC_2を持つ
任意の体が生じうるか? とか、生じるなら係数によってどうパラメトライズされるか
とかは結構重要に思うが、そういう大事な問題に答えている論文が見当たらない。
(引用終り)
それって、まさに>>45の"ガロアの逆問題"と思うけど
で、>>46 ”All permutation groups of degree 16 or less are known to be realizable over Q [4]; the group PSL(2,16):2 of degree 17 may not be [5].” なので、S_5の場合は、答えは”Yes” 但し、"ガロアの逆問題"自身は、Unsolved problem(>>46) まあ、https://en.wikipedia.org/wiki/Inverse_Galois_problem を覗いてみたら?



58:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/20 09:49:54.22 f+LcfVi/.net
>>53
>the group PSL(2,16):2 of degree 17 may not be [5].”
”may not be”だから、多分だめってこと
それは、この部分でさえ、未決着か(゜ロ゜;
まあ、”可能”を証明するのは、例を1つ出せば良い
だが、不可能を証明するのは、簡単じゃないんだね(^^;

59:{}
19/10/20 09:51:19.85 n9MZ9SCV.net
>>51
>>位数はp(p-1)で非可換群
>位数がp(p-1)だから非可換とは言えないだろう?
対称群Spの部分群で位数がp(p-1)なら非可換群
嘘だと思うなら置換から計算して確かめてごらん
貴様こそ底抜けの馬鹿なんだから無理してリコウぶるなwww
対称群Snで、位数がp(p-1)の巡回群が部分群となるには
nがいくつ以上なら十分か、理解してから書き込みやがれ

60:{}
19/10/20 09:55:36.57 n9MZ9SCV.net
殆ど答え同然のヒント
 S5の位数6の部分群でC3×C2になるのは< (123)(45) >

61:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/20 13:00:29 f+LcfVi/.net
>>51 補足
>無理しなくていいぞ

おさる の ぼくちゃん
前スレで(下記)「自分の頭を通して書いている」なんて言われていたが(^^

<おれの推定>
1)まあ、学部レベルで一通り、一般レベルの方程式のガロア理論はやったんだろう
 だが、その学部レベルとは、たいていは、アルティンの本レベルで、
 ガロア群を導入してガロア対応から5次以上の一般方程式がベキ根で解けないことを示して終りだね
2)しかし、ガロアの第一論文の最後は、
「素数p次の代数方程式が解ける条件=ガロア群が位数p(p-1)になるとき」という定理と
 5次の場合に具体的に位数20の群を例示して終わっているのだが
 それは、普通は、学部レベルには入っていないのです
 (和書の学部教科書でこれを取り上げているのは、寡聞にして知らない)
3)ガロアの第一論文を取り上げている和書は、過去、守屋本、倉田本などがあったけど
 (最近は、英文でCoxのガロア理論が出て、訳本も出たけど)
4)で、ぼくちゃん、「自分の頭を通して」というよりも、
 おっさんになって、ほとんど忘れかけている学部の講義の記憶を「思い出しながら」じゃね?w(^^
5)なので、ぼくちゃんの一般学部レベルのガロア理論だと、
 いましている”ガロアの第一論文”の議論には、ちょっと足りない
 まあ、代数の群・環・体は、一通りはやったらしいということは、認めるけれどもね

だから、”無理しなくていいぞ”ってことw(^^;

前スレ77 スレリンク(math板:915番)- より
915 名前:132人目の素数さん[sage] 投稿日:2019/10/17(木) 08:11:30.07 ID:rXxqe236
(抜粋)
Mara Papiyas( ◆y7fKJ8VsjM )さんも勉強しながら書かれてる感じですが、スレ主さんとは違って
自分の頭を通して書いているなというのが分かります
(引用終り)

62:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/20 13:28:47 f+LcfVi/.net
>>18
Terence TaoのFrobenius group追加

URLリンク(terrytao.wordpress.com)
What's new
Updates on my research and expository papers, discussion of open problems, and other maths-related topics. By Terence Tao
Tag Archive
You are currently browsing the tag archive for the ‘Frobenius groups’ tag.

The theorems of Frobenius and Suzuki on finite groups
12 April, 2013 in expository, math.GR, math.RT | Tags: CA groups, characters, classification of finite simple groups, Fourier transform, Frobenius groups, Frobenius theorem, induced representations, integrality gap, Suzuki theorem


3 June, 2013 at 1:03 pm
Terence Tao
Yes, this is something I would like to understand better myself.
One of the funny things coming out of Suzuki’s analysis is that to every (Weyl group conjugacy class of a) character \xi_{i,a} on a (conjugacy class of a) maximal abelian subgroup H_i of G there is associated an “exceptional character” \xi^*_{i,a} of G which is a component of the induced representation of G coming from the character of H_i (or sometimes, a bit weirdly,
it is an “anti-component”, if the sign \epsilon_i is negative), and略

27 June, 2013 at 12:19 pm
Terence Tao
The original reference is
G. Frobenius, “Ueber auflosbare Gruppen IV” Sitzungsber. Preuss. Akad. Wissenschaft. (1901) pp. 1216?1230
but it may be difficult to locate (see URLリンク(math.stackexchange.com) for some related discussion). A somewhat more modern reference is
I.M. Isaacs, “Character theory of finite groups” , Acad. Press (1976)

63:132人目の素数さん
19/10/20 13:56:16.48 bfKlPWyu.net
相変わらずバカ丸出し

64:{}
19/10/20 15:23:17.49 n9MZ9SCV.net
>>57
>”無理しなくていいぞ”
円分体の同型変換も分かってなかったくせに
ガロアの第一論文を理解してるつもりの
無理無理馬鹿に質問だw
対称群S7の部分群である位数7*6の群は
2つの生成元から生成される
その1つは(1234567)だ
ではもう1つの生成元は?
注:生成元となりうる元は複数あるが、どれか1つ挙げればよしとしてやろうw

65:{}
19/10/20 16:01:08.63 n9MZ9SCV.net
>>60のヒント?
馬鹿が>>51に自慢気に書いた式「x→ ax+b」( ̄ー ̄)
(1234567)のところが「+b」に関わる生成元だな
(1234567)じゃなくて(0123456)にしたほうが分かりやすいかもな
ということで「a×」に関わる生成元を書けばいい
ここまで教えてやったのに答えられないようじゃ
要するにガロア第一論文が全然分かってない証拠だぞ( ̄ー ̄)

66:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/20 17:30:44 f+LcfVi/.net
URLリンク(ja.wikipedia.org)
原始元定理
(抜粋)
体論において、原始元定理 (primitive element theorem) あるいは原始元に関するアルティンの定理 (Artin's theorem on primitive elements) は原始元 (primitive element) をもつ有限次体拡大すなわち単拡大を特徴づける結果である。定理は有限次拡大が単拡大であることと中間体が有限個しかないことが同値であるというものである。とくに、有限次分離拡大は単拡大である。

存在の主張
定理の解釈は 1930 年頃エミール・アルティンの理論の定式化で変わった。ガロワの時代から、原始元の役割は分解体をただ1つの元で生成されるものとして表現することだった。そのような元のこの(任意の)選択は Artin の扱いにおいて避けられる[1]。同時に、そのような元の構成の考慮は退く:定理は存在定理 になる。

すると以下のアルティンの定理は古典的な原始元定理に取って代わる。

定理
E⊃= Fを有限次体拡大とする。このときある元 α ∈ E に対して E=F(α)であることと E⊃= K⊃= F なる中間体 K が有限個しか存在しないことは同値である。
すると定理の系はより古風な意味での原始元定理(分離性は通常暗黙に仮定された)である:

E⊃= F} E⊃= F} を有限次分離拡大とする。このときある α ∈ E に対して E=F(α)である。
系は代数体、すなわち有理数体 Q の有限拡大に応用する、なぜならば Q は標数 0 ゆえ任意の拡大が分離的だからである。

つづく

67:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/20 17:31:37.57 f+LcfVi/.net
>>62
つづき
構成的結果
一般に、有限分離拡大 L / K に対するすべての原始元からなる集合は L の真の K-部分空間すなわち中間体の有限の集まりの補集合である。このステートメントは有限体のケースについては何も言っていない。
有限体に対しては体の乗法群(巡回群)の生成元、これは当然原始元である、を見つけるために捧げられた計算理論が存在する。K が無限のときは、鳩ノ巣原理により証明できる。2元で生成された線型部分空間を考えると、c を K の元とする線型結合
γ =α +cβ
は有限個しかなく両方の元を含む部分体を生成できないことが証明される。
これはアルティンの結果から古典的な結果がどのように導かれるかを示す方法としてほとんどすぐであり、中間体の個数の言葉での例外的な c の個数が有界であることが得られる(この数はガロワ理論によってアプリオリにそれ自身制限されるものである)。
したがってこのケースにおいて trial-and-error は原始元を見つける実際的な手法となることができる。例を見よ。
URLリンク(ja.wikipedia.org)
単拡大
(抜粋)
数学、より正確には代数学において、可換体の理論の枠組みで、体 K の拡大 L は、L のある元 α が存在して L が K(α) と等しいときに単拡大あるいは単純拡大 (simple extension) という。
単拡大 K(α) が有限拡大であることと α が K 上代数的であることは同値である。K の(同型の違いを除いて)唯一の無限単拡大は有理関数体 K(X) である。
原始元定理はすべての有限分離拡大が単拡大であることを保証する。
つづく

68:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/20 17:32:55.41 f+LcfVi/.net
>>63
つづき
準備的注意
単拡大の概念は、主に次の二つの点から数学上の興味を集めている。
・単拡大は分類が完了している体拡大である。拡大の生成元が K 上超越的なら無限次拡大で有理関数体に同型(フランス語版)であり、 生成元 α が代数的なら拡大は有限で、α の K 上の最小多項式の根体に同型である。
・原始元の定理はすべての有限次分離拡大が単拡大であることを保証する。代数拡大はそのすべての元の最小多項式が重根をもたないときに分離的という。
有限拡大の分離性のいろいろな同値条件に加えて、代数拡大が分離的であるための十分条件は基礎体が完全体(例えば標数 0 あるいは有限体)であることである。
定義
L を K の体拡大とする。
拡大 L が単 (simple) 拡大であるとは、L のある元 α が存在して、α で生成された L の部分 K 拡大 K(α) が L に等しいことである。
L が単拡大とし g を L の元で L が K(g) に等しいとする。このとき g は L の K 上の生成元 (generating element) と呼ばれる。
URLリンク(peng225.hatena)(URLがNGなので、キーワードでググれ(^^ )
ペンギンは空を飛ぶ
2016-11-26
有限次分離拡大が単拡大となることの具体例を愚直に計算してみる
(抜粋)
体の拡大L/Kが有限次分離拡大であるとき、この拡大は単拡大になることが知られている。私が使っている教科書にもこの定理は載っており、具体例としてQ(2?√,3?√)=Q(2?√+3?√)が取り上げられていた。
しかし、その説明が私にはエレンガント過ぎて、なんともピンとこなかった。
私がとにかく疑問だったのは、一体Q(2?√+3?√)の元の四則演算でどうやって2?√や3?√を生み出せるのか、その具体的な計算手順は何かということだ。
タネが分かった今となっては難しくもなんとも無いが、同じ疑問でハマる人がいないとも限らないので、本稿を書いてみることにした。
手順はとても簡単だ。まず、2?√+3?√∈Q(2?√+3?√)である。これを3乗すると以下のようになる。
以上

69:132人目の素数さん
19/10/20 17:37:49.31 1gpHuTQE.net
>>53
広い意味でガロア逆問題と言えなくもないですが、ガロア逆問題でもとにかく存在するかを問う問題であれば該当しません。
この場合存在自体は分かってるんですよ。いいですか?
Gal(L/Q)=F_20 なる可解5次方程式の分解体LとQの中間体として、Gal(M/Q)=C_4
となる中間体Mが存在しますが、逆にGal(F/Q)=C_4 なるFがあるとき、Fは上記のMとして実現するか?
という問題です。

70:132人目の素数さん
19/10/20 17:42:49.56 1gpHuTQE.net
>>54
存在しなさそうな例があるというのは初めて知りました。しかしよく見つけてきますね笑
ま、"Q上"という設定がやや人工的ですからね。
ちなみにQ上とは限らず基礎体を任意の代数体に動かしてもいいなら、任意の有限群を
ガロア群として持つガロア拡大が存在することは簡単に分かるんですよ。
なぜだか分かりますか?

71:132人目の素数さん
19/10/20 17:48:43.06 1gpHuTQE.net
ガロア逆問題って"解き方"が重要なんであって
逆問題の解でも"質"というのがあるんじゃないかと思う。
つまり、良質な解と、ともかく存在は示せたが応用はないなという解があるんじゃないかと。

72:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/20 17:52:29.06 f+LcfVi/.net
>>62
メモ
”ガロア理論:単拡大定理の意義”
URLリンク(qa.itmedia.co.jp)
ガロア理論:単拡大定理の意義 ITmedia 解決済みの質問 投稿日時 - 2012-11-24
(抜粋)
ガロア理論で,有理数体を係数体として,その根をx1,x2,...xnとしたとき,これらの根を添加した体Q(x1,x2,...xn)と単拡大定理を使った拡大Q(V(x1,x2,...xn)とはどこが違うのでしょうか.もちろん表現として違うことはわかりますが,この根を変数とするパラメータVが存在することによって,体を扱う上で何が違うのでしょうか.単拡大定理の存在理由が今一つわからないので,教えてください.
質問者が選んだベストアンサー kabaokaba 投稿日時 - 2012-11-25 09:00:26
たぶん,「有限次分離拡大は単拡大」の定理のことだと思うけど,
そういうときは,ちょっと保留して
先の議論を眺めるというのがよい方策でしょう.
わざわざ偉大なる先人達が「定理」として残しているからには
今は見えなくても何か裏があるものです.
ましてやGalois理論ですから,もうよってたかって整理されまくって
基礎的なところはとんでもなくすっきりしてるわけですので
#私なんかは「Artinの教科書」には感動しましたよ・・線型代数すげーって<なんか方向違う
##いや。。実際はArtinすげーなんですけどね
とはいえ・・・これじゃあなんだから
例えば,記号の定義はなあなあにして
Q(x,y)が有限次分離拡大だとして,Q(x,y)=Q(x+y)なんてふうに
x+yによる単拡大になったとしましょう.
話が面倒だから・・・xもyもとりあえず二次にしちゃいましょう
そうすると
Q(x,y)の要素は形式的には 1,x,y,xy の四つで表現できる.
Q(x+y)だと x+y だけで表現できる.
この二つ・・・同じものだとしたら,ど


73:っちが「簡単」に見えますか? つまり Q(x,y)=Q(x+y)の要素zが z=a+bx+cy+dxy = e+f(x+y) と表した場合ですね,どっちが簡単かです つづく



74:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/20 17:53:10.38 f+LcfVi/.net
>>68
つづき
これに簡単に「こっちがイイ!」と答えられるのであれば
どっちかの表現は不要かもしれません.
けど・・・大抵はどっちも必要なんです.
理論を展開するには「x+y」だけのほうがきっとシンプルなことが多い.
けど,次数とか要素を具体的に計算するのはきっと「x,y」のほうがシンプルなことが多いです.
ついでにいうと,
同一の対象を二通り(以上)で表現してなんかやるのはお約束のパターンだから
表現方法は複数あったほうがうれしいだろうということもあります
ここらへんは,もうちょっと先にいけばみえてくるはずだと思う.
#ぶっちゃけた話・・x=2^{1/2}, y=3^{1/2}がサンプル
以上

75:132人目の素数さん
19/10/20 17:54:55.87 EgVBmu6J.net
一行問題スレのこれはどう?
95 132人目の素数さん[sage] 2019/10/20(日) 15:54:50.40 ID:RgyjcwSx
>>41の問題をこの方向で解くだけでいいなら
[Q(tan2π/n):Q(cos4π/n)]=1,2と比較的簡単に証明できる[Q(cos(2π/n)):Q]などをうまく使えば出来る。
しかしどうせなら気分良く[Q(tan2π/n):Q]を明示的に求めたいものだ。
[Q(tan2π/n):Q]求めよ。
ガロア理論のいい演習問題だと思うけど。

76:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/20 18:08:37 f+LcfVi/.net
>>65
(引用開始)
Gal(L/Q)=F_20 なる可解5次方程式の分解体LとQの中間体として、Gal(M/Q)=C_4
となる中間体Mが存在しますが、逆にGal(F/Q)=C_4 なるFがあるとき、Fは上記のMとして実現するか?
という問題です。
(引用終り)

その話だと、いわゆるガロア対応で、体の拡大と正規部分群との対応じゃないですか?(下記)
答えは、YES
URLリンク(ja.wikipedia.org)
ガロア理論の基本定理
(抜粋)
数学において、ガロア理論の基本定理 (英: fundamental theorem of Galois theory) とは、ある種の体の拡大がなす構造を記述する結果である。
定理の最も基本的な主張は「体の有限次ガロア拡大 E/F が与えられると、その中間体とガロア群 Gal(E/F) の部分群の間に一対一対応が存在する」ことである。
(中間体とは、F ⊆ K ⊆ E を満たす体のことを言う、それらを E/F の部分拡大と言う。)この定理は拡大体 E/F の中間体の分類という難しく聞こえる問題を、ある有限群の部分群を列挙せよというより扱い易い問題へ変換している。

証明
基本定理の証明は、自明なことではない。通常の扱いで最も重要な点は、与えられた自己同型群により固定された中間体の次元を制御することができるという、エミール・アルティンによる幾分繊細な結果である。
ガロア拡大 K/F の自己同型写像は、体 K 上の函数として線型独立である。この事実は、より一般的な事実である指標の線型独立性から従う。

原始元定理を使うかなり簡単な証明もあるが、有限体の場合に異なる(しかしより簡単な)証明をする必要があるため、現代的な取扱いではほとんど用いられない[1]。

抽象的な言葉では「ガロア対応(英語版)が存在する」と述べられる。その多くの性質は単に形の上でのことであるが、実際の順序集合の同型写像を記述するにはいくらか作業を要する。

つづく

77:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/20 18:09:36 f+LcfVi/.net
>>71
つづき

対応の明示的な記述
有限拡大に対し、対応は次のように明示的に述べることができる。
・Gal(E/F) の任意の部分群 H に対し、対応する体は普通 E^H と書かれ、これは全ての H の自己同型により固定される E の元の集合である。
・E/F の任意の中間体 K に対し、対応する部分群は、単に Aut(E/K) であり、これは全ての K の元を固定する Gal(E/F) に属する自己同型の集合である。
例えば、一番上の体 E は Gal(E/F) の自明な部分群に対応し、基礎体 F は Gal(E/F) の全体に対応する。

対応の性質
対応は次のような有益な性質を持っている。

包含関係を逆にする(inclusion-reversing)[2]。部分群の包含関係 H1 ⊆ H2 が成り立つことと体の包含関係 E^H1 ⊇ E^H2 が成り立つこととは同値。
拡大次数は包含関係を逆にするという性質と矛盾しない形で群の位数と関係する。具体的には H が Gal(E/F) の部分群であれば |H| = [E : E^H] であり |Gal(E/F)/H| = [E^H : F] である[3]。
体 EH は F の正規拡大(分離拡大の部分拡大は分離的だから、これはガロア拡大というのと同じ)であることと、H が Gal(E/F) の正規部分群であることとは同値である。
このとき Gal(E/F) の元の EH への制限は、Gal(E^H/F) と商群 Gal(E/F)/H の間の群同型を引き起こす。


体 K = Q(√2, √3) = Q(√2)(√3) を考える。


非アーベル的な例
次の例はガロア群がアーベル群でない最も簡単な例である。
Q 上の多項式 x3?2 の分解体 K を考える。すなわち、K = Q (θ, ω) で、ここに θ は 2 の立方根であり、ω は 1 の立方根である(が 1 ではない)。


応用
この定理は拡大体 E/F の中間体の分類という難しく聞こえる問題を、ある有限群の部分群を列挙せよというより扱い易い問題へ変換している。
以上

78:
19/10/20 18:10:06 n9MZ9SCV.net
>>60
>対称群S7の部分群である位数42の群は
>2つの生成元から生成される
>その1つは(1234567)だ
>ではもう1つの生成元は?

なんだ、馬鹿はx→ ax+bまでわかってるのに
こんな簡単な質問に即答できないのか?

正真正銘の馬鹿だなw

79:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/20 18:13:38 f+LcfVi/.net
>>67
>ガロア逆問題って"解き方"が重要なんであって
>逆問題の解でも"質"というのがあるんじゃないかと思う。
>つまり、良質な解と、ともかく存在は示せたが応用はないなという解があるんじゃないかと。

そうだとは思うけれども
未解決問題だということの方が
重要じゃないですかね?
なにかめざましい結果だせば、,◯◯賞とかもらえるかもね(^^

80:
19/10/20 18:14:39 EgVBmu6J.net
>>74
さすがに君には無理だよ。
そのレベルにはとてもない。

81:
19/10/20 18:17:49 n9MZ9SCV.net
>>75
確かにコピペ馬鹿には無理www

学部生でも即答できる問題に
答えられないんじゃねw

82:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/20 19:10:21.02 f+LcfVi/.net
>>66
どうも。スレ主です。
>ちなみにQ上とは限らず基礎体を任意の代数体に動かしてもいいなら、任意の有限群を
>ガロア群として持つガロア拡大が存在することは簡単に分かるんですよ。
分かりません(^^
例えば仮に、
「the group PSL(2,16):2 of degree 17 may not be [5].”」
が、反例として成立すると認めることにします
そして、有限の単拡大定理から、任意の代数的数αを添加した拡大体Q(α)をベースとして
拡大体Q(α)上から、ガロア群PSL(2,16)を持つ体の拡大が存在して
これを、単拡大定理から、代数的数β’として(Q上ではないので’を付けた)
Q上に限らないから、拡大体Q(α)(β’)が実現できる?
それって、なんかおかしくないですかね?(^^

83:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/20 19:13:22.44 f+LcfVi/.net
>>75
そりゃそうだ
おれが、いま考えてできる程度の問題なら、とっくに解かれているさ(^^

84:
19/10/20 19:26:33 hYEqVSqR.net
いや、多分これからも無理だよ。
とても真面目に勉強してるようには見えない。
ネット時代なんだから基本的な部分はショートカットして勉強してやろうという気分がレスにまで溢れかえってる。
学問に王道はない。
そんな気持ちで数学やっても行けるところなんてたかが知れてる。

85:132人目の素数さん
19/10/20 19:50:28.96 1gpHuTQE.net
>>77
何を言っているのか分かりません。
ヒント:
Q上S_nをガロア群として持つガロア拡大が存在することは比較的簡単に証明される。
一般方程式(係数が不定元)ではなく、数字方程式としてです。
これはガロア逆問題で最も基本的な結果です。
この事実を使ってよいものとします。

86:{}
19/10/20 20:12:23.39 n9MZ9SCV.net
スレ主はx→ ax+bという情報があっても
>>60の問題に答えられないw
答えは(243756)
要するに(Z/7Z)×の生成元を見つければいい
で、それは3
1→3→2(=9)→6→4(=18)→5(=12)→1(=15)
で、置換は1~7の元だったから、1足せば(243756)
ついでにいうとa(x+b)とax+bは等しくないから非可換だね
1234567
↓+1
2345671
↓×3
4736251
1234567
↓×3
1473625
↓+1
2514736

87:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/20 21:37:41.99 f+LcfVi/.net
>>80 何を言っているのか分かりません。 ヒント: 1) https://en.wikipedia.org/wiki/Inverse_Galois_problem Inverse Galois problem (抜粋) Partial results All permutation groups of degree 16 or less are known to be realizable over Q [4]; the group PSL(2,16):2 of degree 17 may not be [5]. (引用終り) ここで、仮に”the group PSL(2,16):2 of degree 17 may not be [5].”が成立していると認めることにする これは、over Qの結果なのですが 2) さて、>>66より 「ちなみにQ上とは限らず基礎体を任意の代数体に動かしてもいいなら、任意の有限群を  ガロア群として持つガロア拡大が存在することは簡単に分かる」 でしたね では、任意の代数的数αを添加した拡大体Q(α)をベースとして、このベースに PSL(2,16)による体の拡大を実現する方法をどうぞ示してください 3) もし、ある代数的数αを添加した拡大体Q(α)上で、PSL(2,16)による体の拡大を実現する方法が示されたとします そうであれば、その手法はQ上でも、実現できるのでは? そうであれば、”the group PSL(2,16):2 of degree 17 may not be [5].”は否定されることになりそうですぜ 論文になるのでは?



89:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/20 21:42:43.63 f+LcfVi/.net
>>81
ご苦労さん
非可換の計算が出来るんだね
えらいえらい
だけどさ
その x→ ax+b とか、フロベニウスとか
情報は、全部おれが提供してんだけど?
だから、あんたは、学部のガロア理論レベルまでなんだよね
ガロアの第一論文の最終定理(素数p次の代数方程式の可解条件)まで、到達できてなかったし、おそらくまだ到達できていなんじゃね?(^^;

90:
19/10/20 21:56:17 n9MZ9SCV.net
>>83
馬鹿の貴様は計算できないのか?w

渡部一己氏の論文の情報を紹介したのは安達氏 貴様ではない

貴様は読んでないのか?

だいたいx→ ax+b が分かってたら
その瞬間非可換だと分かるだろ
だから貴様は底抜けの大馬鹿野郎なんだよw

「Q(ζn)のガロア群は巡回群Z/nZ」
とかほざいてる時点で、貴様は何も分かってないw

ガロア理論とかいう以前
ガウスなら貴様を見てこういうだろう

「縁なき衆生は度し難し」

91:
19/10/20 22:10:09 n9MZ9SCV.net
>何を言っているのか分かりません。

馬鹿は数学分からないんだから、とっとと数学板から去れw

92:{}
19/10/20 22:39:30.69 n9MZ9SCV.net
馬鹿に餞別代りの宿題だ 読みやがれ
半直積
URLリンク(ja.wikipedia.org)
定義は直観的にやや分かりにくく、奇妙に見えるかもしれないが、
分かりやすい例として、n次元ユークリッド空間におけるアフィン変換群をあげることができる。
n次元アフィン変換は、n次元一般線型変換とn次元の並進変換を合成したものであり、
この変換の全体は群を成し、これをn 次元アフィン変換群と呼ぶ。
2つのアフィン変換(A1,b1)と(A2,b2)の合成変換を考えると、
(A1,b1)(A2,b2)=(A1A2,A1b2+b1)
となり、単純な直積群ではないことが分かる。
しかし一般線形変換群と並進変換群は共にアフィン変換群の部分群を成し、
とくに並進部分群は正規部分群になる。
このような関係をさらに一般化したものが半直積である。

93:132人目の素数さん
19/10/21 04:05:34.48 qT2QtwAU.net
>>82
スレ主は全然ガロア理論が分かってませんね。
ガロア対応の基本中の基本ですよ。
基礎体を特に定めなくてもいいなら
任意の有限群Gを持つガロア拡大K/kの存在が示せる。
kが予め固定されてないってのがミソです。
スレ主の考えでは、このようなK/kがあればそれを
うまく降下させれば、ガロア群Gを持つK'/Q
が得られると思ってるようだが、そうはいかないんですよ。
そこにガロア逆問題の難しさがあるんですよ。

94:132人目の素数さん
19/10/21 04:29:45 qT2QtwAU.net
>>86
その例は面白いですね。
G/N=H なるNとHがあるとき
NとHから代数的操作によって逆にGを
再構成する問題を群拡大の問題って
言うんじゃないですかね。
半直積は直積より少し複雑な構成を与える
群論を勉強したとき素晴らしい概念だなと思ったもんです。

95:{}
19/10/21 06:28:37.86 fwDtM7dP.net
>>88
群の拡大…面白そうですね
URLリンク(ja.wikipedia.org)

96:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/21 07:31:55.79 P3acsak1.net
>>87
ID:qT2QtwAUさん、どうも。スレ主です。
レスありがとう
>任意の有限群Gを持つガロア拡大K/kの存在が示せる。
>kが予め固定されてないってのがミソです。
ええ、どうぞ示して下さい



97:任意の有限群Gを持つガロア拡大K/kの存在」を それで、「kが予め固定されてない」が、どう作用するのか分かるでしょうから >(ガロア拡大)K/kがあればそれを >うまく降下させれば、ガロア群Gを持つK'/Q >が得られると思ってるようだが、そうはいかないんですよ。 それって、ガロアの順問題でしょ? ガロアの順問題に反例、即ち、「そうはいかない」例があると? (>>45) https://ja.wikipedia.org/wiki/%E3%82%AC%E3%83%AD%E3%82%A2%E7%90%86%E8%AB%96 ガロア理論 (抜粋) 逆問題 与えられた方程式(あるいは体のガロア拡大)のガロア群を計算する問題を "ガロアの順問題"、 与えられた群をガロア群にもつ方程式(あるいは体の拡大)を構成する問題を "ガロアの逆問題" と呼ぶことがある。



98:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/21 07:53:33.29 P3acsak1.net
>>81
>答えは(243756)
(もとの問題は>>60-61)
注文つけて悪いが
下記の 卒業研究”S_3, S_4, S_5 の部分群の分類”の
P14 §4.13 S5 の位数 20 の部分群
と対比すると
1)問題の位数42の群が構成できることが示されていない
2)位数42の群が構成されたとして、構成された群がFrobenius group "x→ ax+b, a≠ 0"(下記) となることが示されていない
(∵ n>=3の 置換群自身は、当然非可換ですよね。非可換例1つで何が言いたい? (Z/7Z)×とZ/7Zとで、部分群の位数42を示さなきゃ。そこが肝でしょ?(^^; )
手を動かせとか言っていたよね(>>49)(^^;
どぞ
(参考)
URLリンク(www.isc.meiji.ac.jp)
2008 年度卒業研究 S_3, S_4, S_5 の部分群の分類
>>51
URLリンク(en.wikipedia.org)
Frobenius group
(抜粋)
Examples
・For every finite field Fq with q (> 2) elements, the group of invertible affine transformations x→ ax+b, a≠ 0 acting naturally on Fq is a Frobenius group.

99:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/21 08:01:46.46 P3acsak1.net
>>91 訂正
(∵ n>=3の 置換群自身は、当然非可換ですよね
 ↓
(∵ n>=4の 置換群自身は、当然非可換ですよね
か(゜ロ゜;
参考
URLリンク(ja.wikipedia.org)
交代群
(抜粋)
群 An が可換群となるのは、n ? 3 のときかつそのときに限る。また単純群となるのは n = 3 もしくは n ? 5 のときかつそのときに限る。A5 は位数 60 を持つ最小の非可換単純群であり[4]、最小の非可解群である。
群 A4 はクラインの4元群 V を真の正規部分群として持つ。V は {e, (12)(34), (13)(24), (14)(23)} であり、列 V → A4 → A3 (= C3) は完全である。
ガロワ理論によればこの写像、あるいはこれに対応する S4 → S3 に、四次方程式のフェラリの解法における(三次の)ラグランジュ分解方程式(分解方程式の根によって四次方程式を解くことができる)が対応している。

100:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/21 08:03:15.52 P3acsak1.net
>>92 文字化け訂正
群 An が可換群となるのは、n ? 3 のときかつそのときに限る。また単純群となるのは n = 3 もしくは n ? 5 のときかつそのときに限る。A5 は位数 60 を持つ最小の非可換単純群であり[4]、最小の非可解群であ
 ↓
群 An が可換群となるのは、n >= 3 のときかつそのときに限る。また単純群となるのは n = 3 もしくは n >= 5 のときかつそのときに限る。A5 は位数 60 を持つ最小の非可換単純群であり[4]、最小の非可解群であ

101:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/21 10:13:12 /Sto70zx.net
age
新スレになると、コテハンとトリップ設定を入れないといけなので、そのためも兼ねて(^^

102:132人目の素数さん
19/10/21 15:37:04 55/7dvj1.net
スレ主ってほんとピエロだね

103:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/21 16:28:30 /Sto70zx.net
ありがとう(^^

104:{}
19/10/21 19:26:13.02 fwDtM7dP.net
>>91
>1)問題の位数42の群が構成できることが示されていない
群の公理を満たすことを自分で確かめてごらん
いい勉強だよw
>2)位数42の群が構成されたとして、構成された群が
> Frobenius group "x→ ax+b, a≠ 0"
> となることが示されていない
1,2,3,4,5,6,7を
1,ζ,ζ^2,ζ^3,ζ^4,ζ^5,ζ^6 (ζ=cos(2π/7)+i*sin(2π/7))
として、
各元にζを掛ける操作で(ζ(x+1))
ζ,ζ^2,ζ^3,ζ^4,ζ^5,ζ^6,1
各元を^3する操作で(ζ^(3x))
1,ζ^3,ζ^6,ζ^2,ζ^5,ζ,ζ^4
となるね
あとは操作を結合させてζ(ax+b)になってることを確かめてごらん
いい勉強だよw
君は手を動かして計算しないから馬鹿のままなんだよ
計算しな 注文は自分自身につけな
自分を甘やかしたら負け�


105:「のままだぜwww



106:{} ◆y7fKJ8VsjM
19/10/21 19:35:15 fwDtM7dP.net
>>97の追伸
M大の卒業研究で
F20の生成元が{(12345)(2354)}
とあったんで、どうやって作ったかピンと来たね

馬鹿は計算しないから勘も働かない
工学屋のクセして計算しないとかクソだなw

107:{}
19/10/21 19:51:41.55 fwDtM7dP.net
馬鹿がめんどくさがる計算w
1,ζ,ζ^2,ζ^3,ζ^4,ζ^5,ζ^6
↓^3
1,ζ^3,ζ^6,ζ^2,ζ^5,ζ,ζ^4
↓^3
1,ζ^2,ζ^4,ζ^6,ζ,ζ^3,ζ^5
↓^3
1,ζ^6,ζ^5,ζ^4,ζ^3,ζ^2,ζ
↓^3
1,ζ^4,ζ,ζ^5,ζ^2,ζ^6,ζ^3
↓^3
1,ζ^5.ζ^3,ζ,ζ^6,ζ^4,ζ^2

1,ζ,ζ^2,ζ^3,ζ^4,ζ^5,ζ^6
これで1を先頭とする6個の順列ができたから
あとはそれぞれぐるぐる回しすれば
6×7=42個の順列が出来上がりwww

108:{}
19/10/21 19:59:27.11 fwDtM7dP.net
1,ζ,ζ^2,ζ^3,ζ^4,ζ^5,ζ^6 →+1 ζ,ζ^2,ζ^3,ζ^4,ζ^5,ζ^6,1
↓^3               ↓^3
1,ζ^3,ζ^6,ζ^2,ζ^5,ζ,ζ^4 →+3 ζ^3,ζ^6,ζ^2,ζ^5,ζ,ζ^4,1

109:{} ◆y7fKJ8VsjM
19/10/21 20:28:06 fwDtM7dP.net
こう書けば計算しない馬鹿にも分かるかw

1 →+1 ζ^1 →+1 ζ^2 →+1 ζ^3 →+1 ζ^4 →+1 ζ^5 →+1 ζ^6
↓^3 ↓^3 ↓^3 ↓^3 ↓^3 ↓^3 ↓^3
1 →+3 ζ^3 →+3 ζ^6 →+3 ζ^2 →+3 ζ^5 →+3 ζ^1 →+3 ζ^4
↓^3 ↓^3 ↓^3 ↓^3 ↓^3 ↓^3 ↓^3
1 →+2 ζ^2 →+2 ζ^4 →+2 ζ^6 →+2 ζ^1 →+2 ζ^3 →+2 ζ^5
↓^3 ↓^3 ↓^3 ↓^3 ↓^3 ↓^3 ↓^3
1 →+6 ζ^6 →+6 ζ^5 →+6 ζ^4 →+6 ζ^3 →+6 ζ^2 →+6 ζ^1
↓^3 ↓^3 ↓^3 ↓^3 ↓^3 ↓^3 ↓^3
1 →+4 ζ^4 →+4 ζ^1 →+4 ζ^5 →+4 ζ^2 →+4 ζ^6 →+4 ζ^3
↓^3 ↓^3 ↓^3 ↓^3 ↓^3 ↓^3 ↓^3
1 →+5 ζ^5 →+5 ζ^3 →+5 ζ^1 →+5 ζ^6 →+5 ζ^4 →+5 ζ^2

110:132人目の素数さん
19/10/21 20:42:27.17 QnREEzq+.net
このスレもう3年以上前からやってるみたいだけど、いつまで数学科の学生なら半年で通り過ぎる様なレベルで足踏みするの?
もうこの惨状がググってコピペするなんて作業が数学力の向上になんの役にも立たないことを自ずと示してるようなもんだけど。
この不毛な作業ずっと続けるの?
まぁその人の人生どう使おうがその人の勝手なんだけど。

111:{}
19/10/21 20:50:56.46 fwDtM7dP.net
>>102
「諸君らが調教してくれたスレ主は全く上達しない!何故だ?」
URLリンク(www.youtube.com)

112:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/21 20:59:43.42 P3acsak1.net
>>97-101
ぱち ぱち ぱち
さすがだね
 あとさ、
あんたは分かっているんだろうが
もとは、置換群の話で
例えば、コーシーの2行に書く記法で
>>98)巡回置換(2354)なら
(1,2,3,4,5)
(1,3,4,5,2)
って話で、ちょっと、つなぎを入れてやると
親切だろうな
それと、1のベキ根のべきの話
1,ζ,ζ^2,ζ^3,ζ^4,ζ^5,ζ^6
で、ζの指数で書くと
1=ζ^0,ζ^1,ζ^2,ζ^3,ζ^4,ζ^5,ζ^6
で、指数だけ取り出すと
(0,1,2,3,4,5,6)となって
各元にζを掛ける操作で(ζ(x+1))
ζ,ζ^2,ζ^3,ζ^4,ζ^5,ζ^6,1=ζ^0だと
指数だけ取り出すと
(1,2,3,4,5,6,0)となって
つまり
(0,1,2,3,4,5,6)
 ↓
(1,2,3,4,5,6,0)
コーシーの記法で
(0,1,2,3,4,5,6)
(1,2,3,4,5,6,0)
で、巡回置換の記法では
(1,2,3,4,5,6,0)と書くとか
まあ、ζ^n(n=0~6)の指数と、
順列 (0,1,2,3,4,5,6)が対応するとか
(常識といえば常識だけれど)
ここもつなぎがあると、大学1~2年くらいには親切だろうな
参考
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6)
置換 (数学)
(抜粋)
記法について
有限集合 S の置換に対して、その記法は大きく三種類が存在する。
1815年、コーシーによって導入された[8]二行記法[訳語疑問点]は一行目に S の元を書き、その各元の下に置換による像を書いて二行目とするものである。
二行記法の下の行だけを書くのが一行記法[訳語疑問点]であり、先ほどの例であげた置換は一行記法だと 25431 で表される(成分が複数の文字、例えば二桁の数で表されるような場合には、成分の間にコンマを入れるのが典型的である)。
第三の記法として置換の巡回置換表現(英語版)[10]は、置換を続けて施す効果に焦点を当てたものになっている。
URLリンク(en.wikipedia.org)
Permutation
(抜粋)
Notations
Two-line notation
One-line notation
Cycle notation

113:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/21 21:04:28 P3acsak1.net
>>102
ID:QnREEzq+さん、どうも。スレ主です。
レスありがとう

ID:QnREEzq+と、私スレ主に言っているのだろうが
おれは、”まぁその人の人生どう使おうがその人の勝手なんだけど”の通りですが

ID:QnREEzq+は、人生落ちこぼれで
このスレしか、自分の不遇な人生を慰める場所ないみたいだ

まあ、大目に見てやれよ
おれは、そうしている

114:132人目の素数さん
19/10/21 21:14:15 55/7dvj1.net
落ちこぼれピエロは相変わらず上から目線が大好きで勉強が大嫌い

115:132人目の素数さん
19/10/21 21:16:09 qT2QtwAU.net
それで任意の有限群が実際にあるガロア拡大K/kのガロア群となることは証明できましたか?
スレ主は検索で引っかからないような「自明すぎるから誰も問題にしていない
でも暗黙にはその分野のひとは皆当然分かってる」ような話に弱いですねw

116:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/21 21:17:23 P3acsak1.net
数学科の学生が半年で通り過ぎるレベルも、結構個人差があるみたいだがね
例えば、下記、東京大学数学科生であってもね
(”数学科で勉強していた頃から見れば、もう四半世紀も過ぎて達した境地”とか(^^; )

URLリンク(hiroyukikojima.hate)<)
小島寛之
(抜粋)
略歴
小島 寛之(こじま ひろゆき、1958年 - )
東京都生まれ[要出典]。東京大学理学部数学科卒業。
東京大学大学院理学系研究科数学専攻(現数理科学研究科)の大学院入試に3度落第したため、数学者への道を諦め

117:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/21 22:10:21.07 P3acsak1.net
>>107
>それで任意の有限群が実際にあるガロア拡大K/kのガロア群となることは証明できましたか?
つー、>>90
証明は、あんたとおっちゃんに任すぜw(^^

118:{}
19/10/21 22:14:45.69 fwDtM7dP.net
>>104
馬鹿はまた下らないコメントしてるなw
馬鹿は自分の馬鹿に向き合えないから
いつまでも馬鹿のままなんだよwww

119:{}
19/10/21 22:21:06.49 fwDtM7dP.net
>例えば、コーシーの2行に書く記法で
>巡回置換(2354)なら
>(1,2,3,4,5)
>(1,3,4,5,2)
>って話で
うわぁ、馬鹿丸出しw
お前、巡回置換表示も知らねぇのかよw
巡回置換表示で(2354)と書いたら
2→3→5→4→2
の意味だろが
これをコーシーの2行記法で書けば
(1,2,3,4,5)
(1,3,5,2,4)
だろが、ドアホw

120:{}
19/10/21 22:25:19.80 fwDtM7dP.net
巡回置換(2354)を反復適用した場合
 (1,2,3,4,5)
→(1,3,5,2,4)
→(1,5,4,3,2)
→(1,4,2,5,3)
→(1,2,3,4,5)

121:132人目の素数さん
19/10/21 22:32:57.33 Equcgj9R.net
>>108
それでいいん?
3年もやってるんだからそれなりにガロア理論好きじゃないの?
このままだと四半世紀はおろか一生このままだよ?
3年も勉強していまのレベルなんだったら単に物わかりが悪いとかなんとかではないよ?
勉強に対する大切な何かがハズれてるんだよ。
わかっててやってるならいいけど単に物わかりが悪いだけ、そのうちなんとかなると思ってるなら多分間違ってるよ。
もしホントに数学を楽しみたいと思ってるなら思い切って路線変更すべきだと思う。

122:{}
19/10/21 22:36:53.98 fwDtM7dP.net
>>106
>(馬鹿は)上から目線が大好きで勉強が大嫌い
全くだ
1は勉強しないくせに上から目線で馬鹿丸出しの初歩的間違い書くから嘲笑される
これから心からの侮蔑を込めて1をこう呼んでやろう
”Mount Idiot”(マウント馬鹿)

123:{}
19/10/21 22:47:06.67 fwDtM7dP.net
本日の大戦果
「馬鹿山1は巡回置換記法を誤解したまま線形変換群とかぶっこいてた」
こいつ何を理解したつもりになってたんだろうなwwwwwww

124:{}
19/10/21 22:52:11.24 fwDtM7dP.net
1に捧ぐ
URLリンク(www.youtube.com)
海ゆかば 水漬く屍
山ゆかば 草むす屍
大君の 辺にこそ死なめ
顧みはせじ

125:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/21 23:57:05.17 P3acsak1.net
>>107
>それで任意の有限群が実際にあるガロア拡大K/kのガロア群となることは証明できましたか?
>スレ主は検索で引っかからないような「自明すぎるから誰も問題にしていない
>でも暗黙にはその分野のひとは皆当然分かってる」ような話に弱いですねw
「自明すぎるから誰も問題にしていない
 でも暗黙にはその分野のひとは皆当然分かってる」
ええ、>>87
「ガロア対応の基本中の基本ですよ。
基礎体を特に定めなくてもいいなら
任意の有限群Gを持つガロア拡大K/kの存在が示せる。」
でしたね
そういうのは、一般に”存在定理”とかいうそうですよ
どぞ、証明を(^^
URLリンク(ja.wikipedia.org)
存在定理
URLリンク(en.wikipedia.org)
Existence theorem
(抜粋)
In mathematics, an existence theorem is a theorem with a statement beginning 'there exist(s) ..', or more generally 'for all x, y, ... there exist(s) ...'. That is, in more formal terms of symbolic logic, it is a theorem with a prenex normal form involving the existential quantifier.
URLリンク(ja.wikipedia.org)
カラテオドリの存在定理

126:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/22 00:01:58.91 u309yKT7.net
>>113
自分のことを言っているのかね?(^^
このガロアスレは、もともとテンプレにもある通り(>>8 及び下記)
”大学新入生もいると思うが、間違っても5CH(旧2CH)で数学の勉強なんて思わないことだ
このスレは、半分趣味と遊びのスレと思ってくれ(^^;
もう半分は、ここはおれのメモ帳だ ”
(参考)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む64
スレリンク(math板:9番)-
9 名前:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/04/26(金) 13:55:26.20 ID:mF7ZEDvm [9/34]
大学新入生もいると思うが、間違っても5CH(旧2CH)で数学の勉強なんて思わないことだ
このスレは、半分趣味と遊びのスレと思ってくれ(^^;
もう半分は、ここはおれのメモ帳だ (ここには、自分が面白いと思った情報を集めてあるんだ。過去ログ見ると、いろいろ面白い情報(リンクやPDF があるよ(^^ )
( もしサイト移動などでリンク切れのときは、引用してある文章のキーワードによる検索をお願いします )
以下過去スレより再掲
スレリンク(math板:7番)
7 自分:現代数学の系譜11 ガロア理論を読む[sage] 投稿日:2017/04/19(水) 22:07:49.66 ID:gLi5Ebjw
まあ、過去何年かにわたって、猫さん、別名、¥ ◆2VB8wsVUooさんが、数学板を焼いていたからね
ガロアスレは別として、数学板は焼け跡かな



127:再生は無理だろう そもそも、5CH(旧2CH)は、数学に向かない アスキー字に制限され、本格的な数学記号が使えない 複数行に渡る記法ができない 複数行に渡る矢印や、図が描けない(AA(アスキーアート)で数学はできない) 大学数学用の掲示板を、大学数学科が主体となって、英語圏のような数学掲示板を作った方がいいだろうな、実名かせめてハンドルネーム必須でね、プロないしセミプロ用のを



128:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/22 00:05:09.44 u309yKT7.net
>>111
ども、訂正ありがとう
>巡回置換表示で(2354)と書いたら
> 2→3→5→4→2
>の意味だろが
That's right!
その通りでした(^^;
いいつっこみだ

129:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/22 00:18:04.84 u309yKT7.net
おさるも、バグ取り人として、存在価値があるかも
そういう気がしてきたな(^^

130:132人目の素数さん
19/10/22 01:00:49.20 a6x07kEZ.net
>>118
え?数学勉強する気は全然ないの?
にしては別スレではえらくトンチンカンな反論してくるじゃん?
数学の勉強する気あるの?ないの?

131:132人目の素数さん
19/10/22 06:15:59.34 t2rCNfO0.net
>>117
1.Q上対称群S_n(nは2以上の任意整数)をガロア群としてもつガロア拡大K/Q が存在する。
2.任意の有限群Gはあるnに対してS_nの部分群と同型。(つまりGは忠実な置換表現を持つ。)
3.ガロア対応。S_nの任意の部分群Gに対してGの不変体をkとするとK/kはガロア拡大でGal(K/k)=G。
1.は>>80のヒントに書いた。決して自明ではなく、証明されるべきこと。
2.,3. は代数の常識。

132:132人目の素数さん
19/10/22 06:27:10.90 t2rCNfO0.net
別にQ上でなくても、"一般n次方程式"のガロア群はS_nなんだから
係数に"具体的な数"を入れてもほとんどの場合ガロア群はS_nになるだろうとは想像がつく。
それで2.,3.は常識だから、ともかく任意のGに対してそれをガロア群
として持つ拡大の存在であれば、一瞬で分かるはず。
それは自明だから問題にされない。

133:{}
19/10/22 06:50:28.79 DEgJ0Qgt.net
>>119
こいつ、絶対巡回置換記法の意味知らなかったっぽいな
なにしろ∈の意味も知らずに
{}∈{{}}、{{}}∈{{{}}} だから {}∈{{{}}} だ
とか馬鹿書きまくってたくらいだからな

134:{}
19/10/22 06:53:10.57 DEgJ0Qgt.net
>>118
>アスキー字に制限され、本格的な数学記号が使えない
>複数行に渡る記法ができない
貴様が馬鹿なのは記号とか記法以前の問題
計算しないヤツが数学を理解できるわけがない

135:{}
19/10/22 06:54:39.07 DEgJ0Qgt.net
>>120
馬鹿の誤りはバグではなく病気w
お前がここから失せろ
そうすればおれも書き込みせずに済む
お互いのためだ ぜひそうしろw

136:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/22 07:14:24.79 u309yKT7.net
>>121

これ、>>113のID:Equcgj9Rさんかな?
逆に質問するけど
あなたは、何のために、数学板にいるの?
ガロアスレで説教たれるためか?
いまの数学板で、まともなスレがいくつある?
(下記「数学:2ch勢いランキング」ご参照)
あなた、説教垂れるヒマがあったら、自分でスレ立てるかして、お手本を示したらどうですか?
あるいは、他のスレでも、このスレでも良いけど、自分で有益な書き込みをしたらどうですか?
参考
URLリンク(49.212.78.147)
数学:2ch勢いランキング 10月22日 7:05:28 更新
(抜粋)
順位 6H前比 スレッドタイトル レス数 勢い
1位 = 現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 122  36
2位 = 0.99999……は1ではない その2 438  35
3位 = 現代数学の系譜 カン


137:トル 超限集合論 453  27 4位 = 高校数学の質問スレPart401 957  21 5位 = 数学の本 第86巻 613  21 6位 = フェルマーの最終定理の簡単な証明 584  20 7位 = 【未解決問題】奇数の完全数が存在しないことの証明5 742  20 8位 = 分からない問題はここに書いてね456 842  19 9位 = Inter-universal geometry と ABC予想 41 955  16 10位 = フェルマー最終定理について 303  15 11位 = 文理融合のための数学教育 90  7 12位 = 現代数学はインチキのデパート 102  6



138:{}
19/10/22 07:27:11.60 DEgJ0Qgt.net
>>127
>いまの数学板で、まともなスレがいくつある?
なんか馬鹿はおかしな言い訳するよねw
そりゃ世の中には
「0.99999……は1ではない!」とか
「奇数の完全数が存在しないことを証明した!」とか
「フェルマーの最終定理を初等的に証明した!」とか
訳の分からんことをほざく奴がいるよ
しかし、そういう奴らがいるからって
「{}∈{{}}、{{}}∈{{{}}} だから {}∈{{{}}}」とか
「Qに1の原始n乗根を添加した体のガロア群はZ/nZ」とか
初等的なボケかましていい理由にはならんよなw
つーか、数学板で書き込みするなら
巡回置換記法の意味くらい自分で勉強しろよ
こんなん間違えるヤツとか初めてみたw
おまえどこの高校の卒業だ?もしかして中卒か?

139:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/22 07:51:45.17 u309yKT7.net
>>122-123
> 2.任意の有限群Gはあるnに対してS_nの部分群と同型。(つまりGは忠実な置換表現を持つ。)
それって、ケーリー(Cayley)の定理でしょ?
いま問題にしているのは "ガロアの逆問題"(下記)で、与えられた群をガロア群にもつ方程式(あるいは体の拡大)を構成する問題ですよ
ちょっと違うんじゃない?
つまり"ガロアの逆問題"は、与えられた群Gを含む大きなガロア群(例えば大きなSn)を見つける問題ではなく、「群Gそのものがガロア群になる体の拡大が存在するかどうか」という問題でしょ?
参考
URLリンク(okwave.jp)
任意の有限群は、適当な置換群 Sn(N) の部分群? loboskobay OKWAVE 2009/09/05 質問No.5264057
(抜粋)
「任意の有限群は適当な置換群 Sn(N) の部分群である」
ベストアンサー zk43 2009/09/05
定理の名前でいえば、
ケーリー(Cayley)の定理といいます。
証明の概略としては、Gを位数nの有限群として、
a∈Gを一つ取り、x→ax(x∈G)で写像fa:G→G
を定めると、これは全単射であり、Gの置換を
引き起こします。Gの置換全体の集合をSGとすると、
明らかにSGとSnは同型です。
そして、a→faによって写像φ:G→SGを定めると、
これは単射準同型になるので、GはSGに埋め込まれる、
すなわち、GはSnの部分群と同型となる、といえます。
>>45より)
URLリンク(ja.wikipedia.org)
ガロア理論
(抜粋)
逆問題
与えられた方程式(あるいは体のガロア拡大)のガロア群を計算する問題を "ガロアの順問題"、与えられた群をガロア群にもつ方程式(あるいは体の拡大)を構成する問題を "ガロアの逆問題" と呼ぶことがある。
つづく

140:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/22 07:52:36.07 u309yKT7.net
>>129
つづき
英文だが
URLリンク(en.wikipedia.org)
Cayley's theorem
(抜粋)
In group theory, Cayley's theorem, named in honour of Arthur Cayley, states that every group G is isomorphic to a subgroup of the symmetric group acting on G.[1] This can be understood as an example of the group action of G on the elements of G.[2]
A permutation of a set G is any bijective function taking G onto G. The set of all permutations of G forms a group under function composition, called the symmetric group on G, and written as Sym(G).[3]
Cayley's theorem puts all groups on the same footing, by considering any group (including infinite groups such as (R,+)) as a permutation group of some underlying set.
Thus, theorems that are true for


141: subgroups of permutation groups are true for groups in general. Nevertheless, Alperin and Bell note that "in general the fact that finite groups are imbedded in symmetric groups has not influenced the methods used to study finite groups".[4] The regular action used in the standard proof of Cayley's theorem does not produce the representation of G in a minimal-order permutation group. For example, {\displaystyle S_{3}}S_{3}, itself already a symmetric group of order 6, would be represented by the regular action as a subgroup of {\displaystyle S_{6}}S_{6} (a group of order 720).[5] The problem of finding an embedding of a group in a minimal-order symmetric group is rather more difficult.[6][7] (引用終り) 以上



142:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/22 08:17:24.55 u309yKT7.net
>>81
>x→ ax+b
>要するに(Z/7Z)×の生成元を見つければいい
それ結構センスいいね
ちょっと違うけど、類似のことを考えていた
前スレのBrent Everitt先生 P77を見て、思いついたんだが
前スレの「分解体KはQ上6次拡大体なので、Gal(K/Q)=S_3.
ただし、1の原始3乗根ωを添加した体上では
Gal(K/Q(ω))=C_3と退化する。」
という議論を、Brent Everitt先生 P77を適用すれば
P77のx^5-2=0のクンマー拡大の群から、位数20=5x4の群が求まって、その群は1の原始n乗根ωが添加されない一般の位数20の群と同じ
それを、素数p次 x^p-2=0 で考えると、ガロアの第一論文の最終命題のFrobenius group(>>51)が得られるね
スレ77 スレリンク(math板:875番)-
875 自分返信:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 投稿日:2019/10/16(水) 07:54:22.35 ID:OrOarbJT [5/12]
(抜粋)
(Brent Everitt先生、これお薦めです。カラーの絵が豊富で分り易い。(練習問題の解答が無くなっているね(^^ ))
URLリンク(arxiv.org)
Galois Theory - a first course
Brent Everitt
(Submitted on 12 Apr 2018)
These notes are a self-contained introduction to Galois theory, designed for the student who has done a first course in abstract algebra.
URLリンク(arxiv.org)
スレ77 スレリンク(math板:938番)-
(抜粋)
938 名前:132人目の素数さん[sage] 投稿日:2019/10/17(木) 20:14:37.67 ID:rXxqe236 [7/8]
aを3乗数でない整数とすると、x^3-aはQ上既約。
分解体KはQ上6次拡大体なので、Gal(K/Q)=S_3.
ただし、1の原始3乗根ωを添加した体上では
Gal(K/Q(ω))=C_3と退化する。これが一般3次方程式との違い。
つまり、一般3次方程式は最初に2次方程式を解いたあとωを添加して3次クンマー拡大でべき根表示が得られる
(分解体Kにωが含まれることを必ずしも意味しない)わけですが
最初の2次拡大とQ(ω)/Qが一致する特殊ケースが2項方程式(及びそれと同値な方程式)なわけです。
わたしが指摘したのは、この類似が5次方程式でも成立してるよねってことです。
以上

143:{}
19/10/22 08:40:16.55 DEgJ0Qgt.net
>>131
>>x→ ax+b
>>要するに(Z/7Z)×の生成元を見つければいい
>それ結構センスいいね
いや、速攻3秒で気づくだろw
こんなことで褒められても全然嬉しくねぇわ、ボケw
>ちょっと違うけど、類似のことを考えていた
言い訳すんなw
巡回置換記法も知らんでガロア理論がーとかほざいてた
バカ アホ タワケ 
ダラズ ホンジナシ タクランケw

144:{}
19/10/22 08:44:02.67 DEgJ0Qgt.net
>>132
>バカ アホ タワケ 
>ダラズ ホンジナシ タクランケw
しかし、ここの1を表す最も適当な言葉はこれだろう
ハンカクサイ(半可臭い)…半分OK程度の人
いや半分どころか1割もないけどw

145:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/22 08:56:43.34 u309yKT7.net
>>128
>巡回置換記法の意味くらい自分で勉強しろよ
すまん、すまん
矢ヶ部を思い出したよ
「矢ヶ部 巌:数Ⅲ方式 ガロアの理論」で、S5の部分群を出すところがあって
そのときに、位数20群を扱っていて「F20の生成元が{(12345)(2354)}」(>>98
と書いてあって、その意味も、解説されていたことを思い出した
スレ77 スレリンク(math板:773番)-
773 名前:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 投稿日:2019/10/10(木) 10:32:57.70 ID:K6AlmfoH [1/3]
種本でもないけど、お薦めは、下記「矢ヶ部 巌:数Ⅲ方式 ガロアの理論」
これ分かり易かった。大学教程のガロア理論を学んだ人なら、一日で読めるでしょう
URLリンク(www.ne.jp)
矢ヶ部 巌:数Ⅲ方式 ガロアの理論 まりんきょ学問所 数学の部屋 MARUYAMA Satosi 最終更新日:2019-08-23
概要
3人の対話により、ガロアの理論を紹介している。副題は「アイデアの変遷を追って」
感想
初版は 1976 年、第 9 刷は 2002 年に出ている。その後入手困難となっていたが、 2016 年に新装版が出た。
(引用終り)

146:132人目の素数さん
19/10/22 08:57:02.75 t2rCNfO0.net
スレ主は多分、ほとんど自分の頭で考えることができない
どこに何が書いてあったかとかは知っていて
それを切り貼りしているだけ。
情報の信憑性を天秤にかけて真偽を推定している感じ。
バカという言葉では言い表されない特異な脳の持ち主なのかもしれない。
勿論、数学板からは去ってほしいw

147:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/22 09:05:18.91 u309yKT7.net
>>135
 >>129より
”ちょっと違うんじゃない?
つまり"ガロアの逆問題"は、与えられた群Gを含む大きなガロア群(例えば大きなSn)を見つける問題ではなく、「群Gそのものがガロア群になる体の拡大が存在するかどうか」という問題でしょ?”
どぞ

148:{}
19/10/22 09:09:34.87 DEgJ0Qgt.net
>>135
1は「知識の外部化」が甚だしい
思考すら外部化しちゃってる感じw
しかし思考しないんだったら数学学ぶ意味ないだろ
>(他人の文章を)切り貼りしているだけ。
>情報の信憑性を天秤にかけて真偽を推定している
肝心の基本的な記号(∈等)、記法((2354)等)の
意味を確認せず、自分勝手な解釈で誤解してるから
何を引用しても見当違いだけどなw
>バカという言葉では言い表されない
>特異な脳の持ち主なのかもしれない。
いや、やっぱりバカなんでしょう
勉強せずにリコウぶる「マウンティング」をやるには
人の書いた文章を引用すりゃいい、と思ったんでしょう
まったく馬鹿丸出しな発想
>勿論、数学板からは去ってほしいw
極論をいえば、この世から去ってほしいけどね
こんな軽薄なヤツ、会社でも持て余してると思うんだよな
工学屋のくせに計算サボるとか自爆行為じゃんw
工学屋なんて計算しか能がないんだからさw
こいつ部下にもっともらしいこというだけで
自分は全然仕事しないタイプだな 
ま そんなヤツ珍しくないけどねw

149:132人目の素数さん
19/10/22 09:14:15.06 t2rCNfO0.net
>>136
「ガロア逆問題」は「Q上」という条件が付いている。
そして、Q上とは限らず、ともかくGをガロア群として持つガロア拡大K/kが存在するか?
という問題だと存在は自明になってしまう。だから問題にされないんですよ。
証明は>>122に書いてある通りです。

150:132人目の素数さん
19/10/22 09:14:45.87 wdQutmDL.net
>>129
3年もガロア理論勉強してコレだもん。
ほとんど何もわかってないなとしか見えない。
ヨコなのであんまり詳しくは書かないけど、とにかく話を数式に起こしてキッチリ考えてみなよ?
問題は
1)
∀G finite gp. ∃ K/k fileds s.t.
・K/k galois ext.
・Gal(K/k) &


151:#8773; G だよ? で自分で証明できるかどうかはともかくとして 2) ∀n natural num. ∃ K/k fileds s.t. ・K/k galois ext. ・Gal(K/k) ≅ S_n は知ってるんだよね? コレはわかる? 3) ∀G finite gp. ∃n natural number ∃H ⊂ S_n sub gp. s.t. ・G ≅ H。 2) と3)が証明できるなら1)も証明できるハズだけど? どっちかできないの?



152:{}
19/10/22 09:20:56.37 DEgJ0Qgt.net
>>139
1は、実際には3年間、別の問題に逃げて、
ガロア理論は勉強してなかったけどなw
>とにかく話を数式に起こしてキッチリ考えてみなよ?
ダメダメ、こいつ具体的な計算は
何一つしない(というかできない)から
だって巡回置換記法も誤解してたんだぜwww
普通、計算してる奴なら速攻で誤りに気付くだろ
だって教科書と答えが合わないんだから
1はとにかく間違いを恐れるチキンだから
そういう羽目に陥ることは一切しない
計算すれば誤る可能性が大だからなw
過ちから学ぶのは基本、
誤らないヤツに物事は学べないよw

153:132人目の素数さん
19/10/22 09:26:48.60 ej5w1kbH.net
時々いる
間違い認める=負ける
理論の人かな?
そう言う人も学問向かないんだよな。

154:{}
19/10/22 09:35:10.35 DEgJ0Qgt.net
>>141
何でも勝ち負けだと思う人って
そもそもこの世に負けてるwww
              ,,,,,,,,,,,,,,,,,,,,
             /": : : : : : : : \
           /-─-,,,_: : : : : : : : :\
          /     '''-,,,: : : : : : : :i
          /、      /: : : : : : : : i     ________
         r-、 ,,,,,,,,,,、 /: : : : : : : : : :i    /
         L_, ,   、 \: : : : : : : : :i   / 間違ったら
         /●) (●>   |: :__,=-、: / <   負けかなと思ってる
        l イ  '-     |:/ tbノノ    \
        l ,`-=-'\     `l ι';/      \  1(いい齢・男性)
        ヽトェ-ェェ-:)     -r'          ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
         ヾ=-'     / /
     ____ヽ::::...   / ::::|
  / ̄ ::::::::::::::l `─''''   :::|

155:132人目の素数さん
19/10/22 09:49:10.45 R+uGObSK.net
そうなんだよな。
そういう人って学問向かないだけじゃなくて何やってもダメなんだよな。

156:{}
19/10/22 10:22:40.71 DEgJ0Qgt.net
>そういう人って…何やってもダメなんだよな。
でも、なまじカワイイと世間がもてはやすので反省しないw
URLリンク(www.nikkan-gendai.com)

157:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/22 10:34:18.61 u309yKT7.net
>>131
Brent Everitt先生のガロア理論の表紙に、綺麗な絵のいわゆるサッカーボール 切頂20面体があるのですが
URLリンク(arxiv.org)
 Galois Theory - a first course Brent Everitt (Submitted on 12 Apr 2018))
数学セミナー 2019年11月号で
数学トラヴァース 戸村浩氏がP55の写真で手に持っているがそれですね
URLリンク(www.nippyo.co.jp)
数学セミナー  2019年11月号
(抜粋)
・数学トラヴァース/数理造形はブドウ酒の味がする/
  戸村浩氏(造形美術家)にきく…… 54
URLリンク(polyhedra.cocolog-nifty.com)
切頂20面体(もどき)展開図(ペーパークラフト)
URLリンク(polyhedra.cocolog-nifty.com)
正多面体クラブ
2014年9月 7日 (日)
切頂20面体(もどき)展開図(ペーパークラフト)
つづく

158:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/22 10:34:51.47 u309yKT7.net
>>145
つづき
URLリンク(polyhedra.cocolog-nifty.com)
正多面体クラブ
2017年11月13日 (月)
URLリンク(polyhedra.cocolog-nifty.com)
正20面体・サッカーボール
URLリンク(polyhedra.cocolog-nifty.com)
正20面体の展開図と一緒にあるサッカーボールの


159:出来上がりは、こんな形。 サッカーボールは「切頂20面体」といって、正20面体の頂点を切り落とした形です。切り落としたところを正5角形でふさぐのは(すご~く)大変なので、穴の空いたままです。 ※JAXA(宇宙航空研究開発機構)のサイトに「サッカーボール型木星儀ペーパークラフト」があります。こちらは5角形のところが穴あきじゃないです。(でも作るの大変そう~)元気のある人は、作るの挑戦してみてください。 (引用終り) 以上



160:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/22 10:35:21.88 u309yKT7.net
>>144
そう、あせるな
病気が悪化するぞ

161:{}
19/10/22 10:44:01.24 DEgJ0Qgt.net
>>147
貴様、今度オレから責められて反論不能だったら
このセリフを口にしたらどうだ?w
URLリンク(www.oricon.co.jp)
『私はマイメロだよ~☆
 難しいことはよくわかんないし
 イチゴ食べたいでーす』
ギャハハハハハハ!!!
・・・あいつ、●Vに堕ちねぇかな(極悪)

162:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/22 10:53:50.77 u309yKT7.net
>>138-139

ケーリー(Cayley)の定理(>>129)より
任意の群Gは、置換群による表現を持ち、ある大きな対称群Snに含まれる
そして、ある体E上で、対称群Snをもつ一般方程式(それはn次になる)が存在して、代数拡大F/Eが得られる
これは、Q上でも同じ
それで良いなら、
ガロア逆問題
”All permutation groups of degree 16 or less are known to be realizable over Q [4]; the group PSL(2,16):2 of degree 17 may not be [5].”
なんてことにはならないでしょ? なんで、”the group PSL(2,16):2 of degree 17 may not be [5].”なの?
ある体E上で、PSL(2,16)を使って、拡大体Fがどうなるか?
どぞ、PSL(2,16)の拡大体Fを示してください
 >>46
URLリンク(en.wikipedia.org)
Inverse Galois problem
(抜粋)
( unsolved problems in mathematics)
Partial results
All permutation groups of degree 16 or less are known to be realizable over Q [4]; the group PSL(2,16):2 of degree 17 may not be [5].
参考
URLリンク(ja.wikipedia.org)
代数拡大
(抜粋)
抽象代数学において、体の拡大 L/K は次を満たすときに代数的(英: algebraic)であると言う。
L のすべての元は K 上代数的である、すなわち、L のすべての元は K 係数のある 0 でない多項式の根である。代数的でない体の拡大、すなわち超越元を含む場合は、超越的 (transcendental) と言う。
例えば、体の拡大 R/Q, すなわち有理数体の拡大としての実数体は、超越的であるのに対し、体の拡大 C/R や Q(√2)/Q は代数的である。ここで C は複素数体である。
すべての超越拡大は無限次元の拡大である。言い換えるとすべての有限次拡大は代数的ということになる[1]。しかしながら逆は正しくない。無限次代数拡大が存在する。例えば、代数的数体は有理数体の無限次代数拡大である。
a が K 上代数的であれば、K 係数の a による多項式全体の集合 K[a] は環であるだけでなく体である:K 上有限次の K の代数拡大である。逆もまた正しく、K[a] が体ならば a は K 上代数的である。特別な場合として、K = Q が有理数体のときは、Q[a] は代数体の例である。

163:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/22 10:54:53.97 u309yKT7.net
>>148
落ち着いて、治療した方がいいぞ

164:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/22 10:56:47.41 u309yKT7.net
>>149 補足
>どぞ、PSL(2,16)の拡大体Fを示してください
ああ、好きに基礎体Eを選んで良いよ

165:132人目の素数さん
19/10/22 11:08:09.27 t2rCNfO0.net
証明は>>122で示しましたよ。不備があるなら言って下さい。
補足しますよ。具体例は自分で計算してください。

166:132人目の素数さん
19/10/22 11:13:12.31 t2rCNfO0.net
基礎体を任意に


167:選んでいいならガロア逆問題じゃないです。 Wikipediaで存在しないんかもね?と言われてるのはQ上の話です。 Q上で存在しないとしてもある代数体k上では存在するとしても何の矛盾もありません。



168:{}
19/10/22 11:14:25.07 DEgJ0Qgt.net
1は数学板のU.M.ってことでw
『オレはこのスレッドの主だぜ |m|
 難しいこたぁよくわかんねぇし
 ああスタ丼食いてぇ』
・・・うぜぇぇぇぇぇぇwww
|m|はメロイックサインねw

169:132人目の素数さん
19/10/22 11:15:56.79 4TZy/f/c.net
>>149
> >>138-139
> ?
> ケーリー(Cayley)の定理(>>129)より
> 任意の群Gは、置換群による表現を持ち、ある大きな対称群Snに含まれる
> そして、ある体E上で、対称群Snをもつ一般方程式(それはn次になる)が存在して、代数拡大F/Eが得られる
> これは、Q上でも同じ
ここまではわかるの?
つまり
3)
∀G finite gp. ∃n natural num. ∃H sub gp. of S_n s.t.
G ≅ H
2)
∀n∃K/Q s.t.
K/Q galois ext.
Gal(K/Q) ≅ S_n
の二つはわかるんだな?
じゃあこの二つを組み合わせたら
1)
∀G finite gp. ∃K/k/Q s.t.
K/k Galois ext.
Gal(K/k) ≅ G
が出るのわからん?
そしてコレからは直ちに
4)
∀G finite gp. ∃K/Q s.t.
K/W Galois ext.
Gal(K/Q) ≅ G
が導出されないのはわかる?
ホントに分からんの?
それともわかったと認めるのは負けを認めることになるからプライドが許さないの?

170:132人目の素数さん
19/10/22 11:17:59.86 t2rCNfO0.net
Gal(K/k)=PSL(2,16)となるK/kが存在する。
それは、Kがk上のある代数方程式の分解体だということです。
Q上の代数方程式で同じガロア群を持つ方程式が存在することを意味しません。

171:{}
19/10/22 18:51:07.65 DEgJ0Qgt.net
スレリンク(math板:455番)
>ガロアスレに今日サル石がこんな投稿をしていた
名前が違うな 安達君
{}だよ 覚えてくれたまえ
>>そりゃ世の中には
>>「0.99999……は1ではない!」とか
>>訳の分からんことをほざく奴がいるよ
>これを見ると今でも0.99999……=1だと思っているらしい
実数論の公理を前提すれば
無限小数0.99999……が存在し
0.99999……=1が導かれる
別に実数論の公理を信仰してるわけではない
実数論の公理から矛盾が導けるのなら
是非証明していただきたい
きっとフィールズ賞が獲れるだろう
(注:冗談ではなく真面目なコメントである)

172:132人目の素数さん
19/10/22 19:58:41.99 0jZI4t6q.net
こっちのスレはあんまりのぞいてないんですけど、なんで中学レベルすらわかってない安達さんがこんな難しいスレにいるんですか?

173:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/23 22:52:07 Ro3lha8R.net
メモ
URLリンク(www.nikkei.com)
グーグル、量子計算機で「超計算」成功と発表
2019/10/23 18:07日本経済新聞 電子版

米グーグルが開発した量子コンピューター用のチップ「シカモア」=同社提供

米グーグルは23日、量子コンピューターを使い、複雑な計算問題を最先端のスーパーコンピューターよりも極めて短い時間で解くことに成功したと発表した。理論上、量子コンピューターはスパコンを上回る性能を持つと考えられてきたが、世界で初めて実験で証明した。
人工知能(AI)などに続く革新的技術として期待される量子コンピューターの実用化へ、大きく前進する。

同日付の英科学誌「ネイチャー」で成果を報告した。

発表によると、同社の量子コンピューターが従来のコンピューターでは困難な問題を解く性能を示す「量子超越」を達成した。乱数をつくる計算問題を用意して検証したところ、最先端のスパコンが約1万年かかるのに対し、量子コンピューターは3分20秒で解くことができたという。一般的に乱数は暗号技術などで使われることが多い。

量子コンピューターは


174:「量子力学」と呼ぶ物理法則に従って動く。従来のコンピューターが「0」か「1」かで情報を表すのに対し、量子コンピューターは「0であり、かつ1でもある」という特殊な状態を利用して大量の情報を一度に処理できるのが特徴だ。計算の回数が減り、時間も大幅に短縮できる。 グーグルは2013年に量子人工知能研究所を設置。米カリフォルニア大学サンタバーバラ校の研究グループを迎えるなどして、量子コンピューターの開発に力を入れてきた。今回、0と1を重ね合わせた53個の「量子ビット」を利用し、スパコン超えの性能を実証した。 量子超越の達成により、コンピューターの開発の歴史に新たな一歩が刻まれることになる。幅広い計算に対応する量子コンピューターの実現にはなお時間がかかるが、AIの計算や金融リスクの予測、化学実験など幅広い用途が見込まれ、具体的な活用法の研究も加速する見通しだ。 電子版の記事がすべて読める有料会員のお申し込みはこちら



175:132人目の素数さん
19/10/23 22:56:55 AP7TCWkP.net
1 ガロア理論と無関係の書き込みで誤魔化すw

176:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/23 23:01:06 Ro3lha8R.net
>>159 追加

この批判は、結構面白いね
C++さんの世界かもしれん(^^;
URLリンク(www.nikkei.com)
[FT]IBM、グーグルの「量子超越」達成は「大げさ」
2019/10/23 日経 by Richard Waters (2019年10月22日付 英フィナンシャル・タイムズ電子版 URLリンク(www.ft.com)
(抜粋)
IBMの研究者5人は21日に発表した論文で、グーグルの量子コンピューターが最先端のスーパーコンピューターの性能をはるかに上回るという主張は大げさだと述べた。

グーグルのこうした主張は、英紙フィナンシャル・タイムズ(FT)が9月、他社に先駆けて報じた未発表の研究論文に書かれていた。
グーグルは自社の量子コンピューターについて、米エネルギー省のスパコン「サミット」で1万年かかる計算を3分20秒で完了したと報告した。
これを「量子プロセッサーにしかできないコンピューター計算の初めての例」と位置づけ、「コンピューター計算で待ち望まれていたパラダイムの到来を告げる」とした。

■「将来的に従来コンピューターと併用」
しかしIBMの研究者は、独自の方法を用いて同じ計算問題をスパコンで解いてみたところ、2日半しかかからなかったと明らかにした。
グーグルに対しては、スパコンの性能がシステムメモリーに保存できるデータ量によって制限されると想定したことが間違いだとし、このような足かせを乗り越えられる「豊富なディスク容量を考慮しなかった」と指摘した。
さらに、その他のハードウエアやソフトウエアの発展にも言及し、IBMでの計算に要した2日半という結果はどちらかと言えば「控えめで、最悪ケースの見積もり」だと付け加えた。

量子コンピューターの実現をグーグルと競い合うIBMは、グーグルが「量子超越」を標榜しようとしたことにも反発している。
量子コンピューターと従来のコンピューターには大きな違いがあるため、将来的に「併用される」見通しだと説明したうえで、今回の一連の報道はあたかもコンピューターの新時代が到来したかのような「誤解を世間に必ず与える」と非難した。
IBMは既に、グーグルの主張に対する批判を公に表明している。

新たなプログラミング方法で従来のコンピューターの性能が追い付く可能性もあり、量子コンピューターとの競争に決着がついたわけではないという声もある。

177:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/23 23:03:04.37


178:Ro3lha8R.net



179:132人目の素数さん
19/10/23 23:04:00.12 AP7TCWkP.net
1 ガロア理論と無関係の書き込みで誤魔化すw

180:132人目の素数さん
19/10/23 23:05:12.26 AP7TCWkP.net
1=乞食

181:132人目の素数さん
19/10/24 00:19:10 raXhEItc.net
スレ主さんは論理式読めるの?
H sub gp of Gal(K/Q) ⇒ ∃k s.t. K/k Galois ext. Gal(K/k)=H

H sub gp of Gal(K/Q) ⇒ ∃k s.t. k/Q Galois ext. Gal(k/Q)=H
のちがいはわかりますか?
どちらかは確実に合っててどちらかは私の知る限り未解決問題なんですがどちらが正しくてどちらが未解決問題かわかりますか?
正しい方がわかるならもう一方が未解決問題の方です。

182:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/24 00:53:07 G70Rid0Q.net
>>158
>こっちのスレはあんまりのぞいてないんですけど、なんで中学レベルすらわかってない安達さんがこんな難しいスレにいるんですか?

どうも。スレ主です
安達さんは、スレ18(2016年)(下記)からの古参の人だよ
当時、ガロア理論の質問をしてきてね
私スレ主が説明したけど(他に説明した人は、いなかったのだが)、納得できないといってね(^^
自分で解説を考えて、それを書いて本に入れたという

(参考)
URLリンク(www.v2-solution.com)
V2-Solution Inc. 書籍紹介
相対性理論はペテンである/無限小数は数ではない
安達 弘志 著
発売日20190701
(抜粋)
内容紹介
「ガロア第一論文のシンプル解説」現代の抽象代数学の用語を一切用いない、シンプルで、深い、最良の解説書

ガロアスレ18 スレリンク(math板:179番)-
(抜粋)
179 名前:132人目の素数さん[] 投稿日:2016/02/20(土) 10:38:56.58 ID:ue3tj7XN [1/3]
どうもスレ主は私の言っていることの意味が分かってないようだが、ま、いいか(笑
私は理系ではなく、ましてや数学をを専攻したような人間ではない。
ただ五次方程式が解けないことをガロアが群という考えを用いて証明した、
ということを知って興味を持って調べているだけである。

で、何の予備知識もなくいきなり「群と代数方程式」を買って読んでみたが、
書いてあることの意味自体が理解できなかった(笑
で、解説書も少し読んでみて、何となく分ったような気になったが、
よく考えるとやはり分らない(笑

そこで「ガロアを読む」を買って今読んでいるのだが、
これも数学専攻学生のために書かれたような本で、
こんなものを読んでも素人には本質的なことは何も分らない。

で、今、図書館で「13歳の娘に語るガロアの数学」をリクエストしてきた。

180 名前:132人目の素数さん[] 投稿日:2016/02/20(土) 11:07:17.65 ID:ue3tj7XN [2/3]
補題4が分ったと書いたが、100%理解できたというわけでもない。

V´がVの根を置換したものだということは分る。
しかし根aがf(V)で表わされるなら他の根bはf(V´)で表わされる、
ということの厳密な証明がない。


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch