現代数学の系譜 工学物理雑談 古典ガロア理論も読む78at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む78 - 暇つぶし2ch376: Polynomial factorization 6.1 Irreducible polynomials of a given degree 6.2 Number of monic irreducible polynomials of a given degree over a finite field 7 Applications 8 Extensions 8.1 Algebraic closure 8.1.1 Quasi-algebraic closure 8.2 Wedderburn's little theorem 8.3 Relationship to other commutative ring classes 9 See also Existence and uniqueness Let q = p^n be a prime power, and F be the splitting field of the polynomial Explicit construction Non-prime fields Given a prime power q = pn with p prime and n > 1, the field GF(q) may be explicitly constructed in the following way. One chooses first an irreducible polynomial P in GF(p)[X] of degree n (such an irreducible polynomial always exists). Then the quotient ring Relationship to other commutative ring classes Finite fields appear in the following chain of inclusions: commutative rings ⊃ integral domains ⊃ integrally closed domains ⊃ GCD domains ⊃ unique factorization domains ⊃ principal ideal domains ⊃ Euclidean domains ⊃ fields ⊃ finite fields See also Quasi-finite field Field with one element Finite field arithmetic Finite ring Finite group Elementary abelian group Hamming space (引用終り)




次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch