19/10/26 10:55:16.75 fHUQGPHQ.net
>>198
ID:QC0xCFfPさん、どうも。スレ主です。
ありがとう ありがとう
了解です
あなたの言っているのは、
自由度を上げると解けるって話ですね
元は
"ガロアの逆問題" (下記):
基礎体Fと群G(非可換の場合も)が与えられたとき、拡大体Eを構成せよ
対して、
あなたの変形した問題:
群G(非可換の場合も)が与えられたとき、ある基礎体Fと拡大体Eの組が存在するか
あなたの変形した問題では、自由度が上がって、基礎体Fと拡大体Eの組合わせが1つあれば良い
それは、>>176に示したように、ガロア理論の基本定理と
ケーリー(Cayley)の定理(>>129)から、
Snを十分大きく取れば、
任意の群Gに対して、
Gal(E/F) =Sn (n次対称群)
体:Q ⊆ F ⊆ K ⊆ E
↓↑(ガロア対応)
群:S'⊇ Sn⊇ G ⊇{e}
から、「 K ⊆ E」の存在が示せるってことですね
”自由度を上げる”というのは、数学では、他にもいろいろありますね
整数解を求める前に、有理数解を求めるとか、代数的整数の解を求めてみるとかね
(>>45より)
(参考)
URLリンク(ja.wikipedia.org)
ガロア理論
(抜粋)
逆問題
与えられた方程式(あるいは体のガロア拡大)のガロア群を計算する問題を "ガロアの順問題"、与えられた群をガロア群にもつ方程式(あるいは体の拡大)を構成する問題を "ガロアの逆問題" と呼ぶことがある。