現代数学の系譜 カントル 超限集合論at MATH
現代数学の系譜 カントル 超限集合論 - 暇つぶし2ch82:現代数学の系譜 雑談
19/10/05 17:27:22.62 JrhjRl4x.net
>>79
追加

Φ=0∈1∈2∈3・・・∈n・・・∈N
の長さが有限?
あなた
なんとかの素人さんですか?

83:現代数学の系譜 雑談
19/10/05 17:29:46.51 JrhjRl4x.net
>>77 タイポ訂正
3)冪集合を使って、{a}から{{a}}というカッコ{}を一つ集合を作ることができる(>>14に示しました)
 ↓
3)冪集合を使って、{a}から{{a}}というカッコ{}を一つ増やした集合を作ることができる(>>14に示しました)

84:132人目の素数さん
19/10/05 17:32:11.51 o3FGv8uB.net
それじゃ、おっちゃんもう寝る。

85:現代数学の系譜 雑談
19/10/05 18:24:09.06 JrhjRl4x.net
>>14
(引用開始)
冪集合で P({a})={Φ,{a}}
つまり、 P({a})は{a}という一元集合の冪集合です
ここで、{Φ,{a}}から、{{a}}という集合を作ることができるということを認めることにしましょう
(注:{Φ,{a}}から、元Φを取り除くだけですけど(多分、分出公理を使う)
 あるいは、 P({Φ,{a}})={Φ,{Φ},{{a}},{Φ,{a}}}としても、{{a}}は作ることができる )
(引用終り)
上記より、空集合の冪集合を繰返して順に集合を作り、{}の多重になった集合を作る
1回P(Φ)={Φ}→{Φ}(1重)
2回P({Φ})={Φ,{Φ}}→{{Φ}}(2重)
3回P({{Φ}})={Φ,{{Φ}}}→{{{Φ}}}(3重)
 ・
 ・
n回P({・・{Φ}・・})={Φ,{・・{Φ}・・}}→{{・・{Φ}・・}}(n重集合)
(ここに、{・・{Φ}・・}は、{}のn-1重集合)
フォン・ノイマン宇宙の「0に冪集合の演算を超限回繰り返して得られる集合」を認める
空集合Φに、ω回冪集合の演算を繰り返した集合として、ω重集合
ω回P({・・・{Φ}・・・})={Φ,{・・・{Φ}・・・}}→{{・・・{Φ}・・・}}(ω重集合)
”{{・・・{Φ}・・・}}(ω重集合)”を定義します
この集合の性質は、超限順序数ωの性質を引き継ぐものとします
つまり
Φ=0∈1∈2∈3・・・∈n・・・∈ω=N
で、この∈関係は、ノイマン構成と違って、集合演算としては推移的ではない
但し、単なる順序としての∈関係では、推移的です(順序の逆転はない)
これが、”{{・・・{Φ}・・・}}(ω重集合)”の定義です(^^
この話は、>>70の下記と符合していますね
つまり、「順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できる」ということです
つづく

86:現代数学の系譜 雑談
19/10/05 18:24:33.56 JrhjRl4x.net
>>83
つづき
URLリンク(ja.wikipedia.org)
順序数
(抜粋)
注釈
2.^ 順序数は本来、上で述べた定義とは異なる仕方で定義されていた。
その定義とは、順序集合全体の集まりを「同型である」という "同値関係" によって類別したとき、順序集合 (A, <) の "同値類" を (A, <) の順序型(order type)と呼び、特に整列集合の順序型を順序数と呼ぶというものである。
ところが現代の標準的な集合論においては、A が空集合でない限り (A, <) と同型な順序集合全体の集合といったものは存在しないことが示される。したがって、このような順序数の定義の仕方は正当な方法であるとは認められない。
これを克服するために考えられたのが上で述べた定義であり、現在は上の定義(あるいはそれと同値な定義)が広く用いられている。
だが、順序型というアイデア自体が排除されたわけではない。順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できるということが知られている。
ただし、整列集合の順序型と順序数は別のものになる。
詳細は「順序型」を参照。
以上

87:現代数学の系譜 雑談
19/10/05 18:25:29.16 JrhjRl4x.net
>>82
おっちゃん、どうも、ガロアスレのスレ主です。
おっちゃん、おやすみ(^^

88:132人目の素数さん
19/10/05 18:35:04.19 o3KPqddg.net
>>83
まだダメ。
wikiの下の方にちゃんと
‘冪集合をとる操作を超限的に繰り返したもの’
を数学的にどう定義するか述べられてるでしょ?
それと同じ事をやらなけりゃダメ。

89:132人目の素数さん
19/10/05 19:11:07.76 kZwmbLNI.net
>>77
>空集合Φに冪集合の演算を超限回繰り返して得られる」
>集合 {・・・{Φ}・・・}({}が無限重になっている集合)
>は存在します
嘘をいくら書かれても真実にはなりませんね
証明できますか?できませんよ

90:132人目の素数さん
19/10/05 19:13:30.11 kZwmbLNI.net
>>80
>列
>Φ=0∈1∈2∈3・・・∈n・・・∈N
>の長さが有限?
ええ
あなたがいつまでも「・・・∈N」と∈の左側を書かないから
自分の誤りに気づけないのです
なぜいわれたことをやらないのですか?
必ずやりましょう それが数学です

91:132人目の素数さん
19/10/05 19:20:17.29 kZwmbLNI.net
>>83
>フォン・ノイマン宇宙の
>「0に冪集合の演算を超限回繰り返して得られる集合」
>を認める
>空集合Φに、ω回冪集合の演算を繰り返した集合として、ω重集合
>ω回P({・・・{Φ}・・・})={Φ,{・・・{Φ}・・・}}→{{・・・{Φ}・・・}}(ω重集合)
>”{{・・・{Φ}・・・}}(ω重集合)”を定義します
「ω回」が誤りですね
>>36で書きましたよ 必ず読みましょう
フォン・ノイマン宇宙
URLリンク(ja.wikipedia.org)
「・V0は空集合, {}とする。
 ・各順序数 βに対して、Vβ+1はVβの冪集合とする。
 ・各極限順序数 λに対して、Vλは、次の和集合とする:
  Vλ=∪(β<λ)Vβ」
ωは極限順序数ですから
Vω=∪(n<ω)Vn
です
勝手に「ω回」とか嘘八百をでっちあげるのは
迷惑だから絶対にやめてください

92:132人目の素数さん
19/10/05 19:22:38.29 kZwmbLNI.net
>>86
◆e.a0E5TtKE氏は
wikiのフォンノイマン宇宙の記述を読まずに
フォンノイマン宇宙に関する嘘をつき続けるとか
知的誠実さに著しく欠けていると言わざるを得ませんね

93:現代数学の系譜 雑談
19/10/05 21:31:10.08 JrhjRl4x.net
>>77
ツェルメロ構成
批判はされているけれど(^^
URLリンク(plato.stanford.edu)
Stanford Encyclopedia of Philosophy
Zermelo’s Axiomatization of Set Theory
First published Tue Jul 2, 2013
(抜粋)
3.2.1 Representing Ordinary Mathematics
The first obvious question concerns the representation of the ordinary number systems.
The natural numbers are represented by Zermelo as by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these.
Moreover, it seems that, since both the set of natural numbers and the power set axiom are available, there are enough sets to represent the rationals and the reals, functions on reals etc.
What are missing, though, are the details: how exactly does one represent the right equivalence classes, sequences etc.?
And assuming that one could define the real numbers, how does one characterise the field operations on them?
In addition, as mentioned previously, Zermelo has no


94: natural way of representing either the general notions of relation or of function. This means that his presentation of set theory has no natural way of representing those parts of mathematics (like real analysis) in which the general notion of function plays a fundamental part. 3.2.2 Ordinality Zermelo's idea (1908a) was pursued by Kuratowski in the 1920s, thereby generalising and systematising work, not just of Zermelo, but of Hessenberg and Hausdorff too, giving a simple set of necessary and sufficient conditions for a subset ordering to represent a linear ordering. He also argues forcefully that it is in fact undesirable for set theory to go beyond this and present a general theory of ordinal numbers: (引用終り)



95:現代数学の系譜 雑談
19/10/05 21:35:51.26 JrhjRl4x.net
>>91 補足
”The natural numbers are represented by Zermelo as by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these.
Moreover, it seems that, since both the set of natural numbers and the power set axiom are available, there are enough sets to represent the rationals and the reals, functions on reals etc.
What are missing, though, are the details: how exactly does one represent the right equivalence classes, sequences etc.?”
ツェルメロ自然数構成
批判はされているけれど(^^
・by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these
・since both the set of natural numbers and the power set axiom are available, there are enough sets to represent the rationals and the reals, functions on reals etc.
・何が不足なの? What are missing, though, are the details: how exactly does one represent the right equivalence classes, sequences etc.?
まあ、ツェルメロ自然数構成から、無限集合が出来て、自然数とその冪集合から、有理数や実数や実関数などはできる
でも、批判はあった。それは、基礎論パイオニアの宿命でもあったかもしれない(^^

96:132人目の素数さん
19/10/05 21:40:30.03 bWNxCkT0.net
白痴くんに質問
{{…{}…}}({}が無限重)
の最初に現れる}は(左から)何文字目ですか?

97:現代数学の系譜 雑談
19/10/05 21:44:03.00 JrhjRl4x.net
>>92 補足
”The natural numbers are represented by Zermelo as by Φ, {Φ}, {{Φ}}, …, and the Axiom of Infinity gives us a set of these.”
これで、無限集合ができるなら、{・・・{Φ}・・・}と無限多重の{}カッコが加わった集合が構成されうるってことですよ
それがなければ、有限集合にしかならんわな
だから、くどいけど、Stanford大 URL見ると Michael Hallett さんて方らしいが、ツェルメロ構成で実数まで到達できると言っているんだから
{・・・{Φ}・・・}と無限多重の{}カッコが加わった集合が構成されうるってことですよ(^^

98:132人目の素数さん
19/10/05 21:51:10.51 kZwmbLNI.net
>>91-92
英語読めませんか?
Infinity
This final axiom asserts the existence of an infinitely large set which contains the empty set, and for each set a that it contains, also contains the set {a}. (Thus, this infinite set must contain ∅, {∅}, {{∅}}, ….)
つまり>>29で述べたω’(={{},{{}},{{{}}},…})
∃ω’.{}∈ω’∧(∀x.x∈ω’⇒{x}∈ω’)
だといってます
決して{・・・{Φ}・・・}ではありません

99:現代数学の系譜 雑談
19/10/05 21:53:33.52 JrhjRl4x.net
>>93
無限集合って定義というか公理なんだからさ、そういう質問は関係ないよね(^^
それ、同じ質問、ノイマン構成でも同じ質問できるよね?
ノイマン構成で無限集合ができました
それで小さい元を左に大きい元を右に並べて、一番右の数字は何か?答えられないならなに? ノイマン構成の無限集合が存在できないとでも? (^^;

100:132人目の素数さん
19/10/05 21:56:21.51 kZwmbLNI.net
ついでにいうと{{},{{}},{{{}}},…}の
左から順に元を削除していって、
最後の1個を残す、というやり方で
{・・・{Φ}・・・}を作ることはできません
なぜなら最後の1個が存在しないからです

101:132人目の素数さん
19/10/05 21:58:40.23 kZwmbLNI.net
>>96
>小さい元を左に大きい元を右に並べて、一番右の数字は何か?答えられないならなに?
>ノイマン構成の無限集合が存在できないとでも?
一番右の要素が存在しなくても集合として存在します

102:132人目の素数さん
19/10/05 22:01:01.97 kZwmbLNI.net
集合について要素の数を「横方向」、{}の深さを「縦方向」と呼ぶことにすると
横方向は可算無限だろうが、非可算無限だろうが、いくらでも広がりますが
縦方向は必ず有限です

103:132人目の素数さん
19/10/05 22:01:40.77 o3KPqddg.net
ヨコです。
>>92の英文の読みは>>94さんが正解ですね。
Zermeloの構成で可算無限集合ができると言ってる無限集合は{0,1,2,3,‥}であってこのスレのΩが構成できるという意味ではありません。

104:132人目の素数さん
19/10/05 22:03:31.08 o3KPqddg.net
あ、間違った>>94でなく>>95です。
兎にも角にもΩの定義をキチンと与えないとダメです。

105:現代数学の系譜 雑談
19/10/05 22:18:51.82 JrhjRl4x.net
>>95
ありがとう
ええ、確かにそうです
ですが、その英文の記述は
{・・・{Φ}・・・}なる無限多重カッコ{}の集合を否定するものではないですよね
ツェルメロの自然数構成で、後者関数はあくまで、aに対して{a}ですからね
(下記の(a)と(b) とですね)
私は、N={Φ, {Φ}, {{Φ}}, …}は、自然数の集合として、決して否定するものではありませんよ
(追加引用)
URLリンク(plato.stanford.edu)
Stanford Encyclopedia of Philosophy
Zermelo’s Axiomatization of Set Theory Michael Hallett
First published Tue Jul 2, 2013
(抜粋)
II.Axiom of Elementary Sets
This asserts
(a) the existence of a set which contains no members (denoted ‘0’ by Zermelo, now commonly denoted by ‘Φ’);
(b) the existence, for any object a, of the singleton set {a} which has a as its sole member; and
(c) the existence, for any two objects a, b, of the unordered pair {a, b}, which has just a, b as its members.

106:現代数学の系譜 雑談
19/10/05 22:25:40.62 JrhjRl4x.net
>>99
>縦方向は必ず有限です
証明は?
正則性公理に反するですか?

107:現代数学の系譜 雑談
19/10/05 22:36:43.78 JrhjRl4x.net
>>98
>>ノイマン構成の無限集合が存在できないとでも?
>一番右の要素が存在しなくても集合として存在します
そういう禅問答なら
タマネギからっきょの皮むきですね
一皮むいても、その下にはまた皮があるよと(^^

108:132人目の素数さん
19/10/05 22:47:37.84 yY/gQRZe.net
>>104
> 禅問答
別に禅問答でなくてね
{a}はaを要素に持つ集合
{0, 1, 2, ... }は(有限個でない)有限集合を要素に持つ集合
> {・・・{Φ}・・・}
これが集合ならばその要素は何?という話です
(あんたは決して答えないが)

109:132人目の素数さん
19/10/05 22:56:00.53 yY/gQRZe.net
>>33
> 「順序数は…」はどういう意味?
> {・・・{Φ}・・・}なる無限多重カッコ{}の集合
順序数ω={?}で?(集合の要素)が何かという問いに対して
ω = {ある1つの有限集合}であればその順序数は有限であり
ω = {ある1つの無限集合}であればその順序数はω+1以上となる

110:132人目の素数さん
19/10/05 23:07:40.39 kZwmbLNI.net
>>106
>ω = {ある1つの有限集合}であればその順序数は有限であり
>ω = {ある1つの無限集合}であればその順序数はω+1以上となる
その説明では全然分からないが
もしかして上記の集合がフォンノイマン宇宙Vαで初めて現れるとして
その順序数αのこと?

111:132人目の素数さん
19/10/05 23:09:45.56 kZwmbLNI.net
>>107
ついでにいうと{ある1つの有限集合}というだけでは
Vn(nは自然数)で現れる、とはいえない
遺伝的有限集合である必要がある

112:132人目の素数さん
19/10/05 23:44:42.17 ob9cJrJf.net
数学板「現代数学の系譜」シリーズも原著者が嘆くようなスレ2本かww

113:現代数学の系譜 雑談
19/10/06 07:57:27.47 d8OQiN+r.net
>>95 追加
>Infinity
>This final axiom asserts the existence of an infinitely large set which contains the empty set, and for each set a that it contains, also contains the set {a}.
> (Thus, this infinite set must contain Φ, {Φ}, {{Φ}}, ….)
で、N={Φ, {Φ}, {{Φ}}, …}で、自然数の集合Nができるけど
無限公理で最初は、Nよりも大きな集合ができるんですよね、確か(下記wiki)
それを、最小の無限集合に絞って小さくする操作が必要です
最小の無限集合に絞った結果、Nには有限の元nしか含まれないものができる
なので、無限公理でできた最小に絞る前の無限集合には、
自然数を表現する以上の
つまり、真に無限の{・・・{Φ}・・・}なる無限多重カッコ{}の集合が
含まれていることは
明白ですね
QED
(参考)
URLリンク(en.wikipedia.org)
Axiom of infinity
(抜粋)
In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo?Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing the natural numbers. It was first published by Ernst Zermelo as part of his set theory in 1908.[1]
Thus the essence of the axiom is:
There is a set, I, that includes all the natural numbers.
Ex


114:tracting the natural numbers from the infinite set The infinite set I is a superset of the natural numbers. To show that the natural numbers themselves constitute a set, the axiom schema of specification can be applied to remove unwanted elements, leaving the set N of all natural numbers. This set is unique by the axiom of extensionality.



115:現代数学の系譜 雑談
19/10/06 08:00:15.16 d8OQiN+r.net
>>105
 >>110をどうぞ

116:現代数学の系譜 雑談
19/10/06 08:39:19.54 d8OQiN+r.net
>>77 追加
下記、定理 93ですけど、ここに集積点を含まないことは明白ですね(^^
URLリンク(www.math.tsukuba.ac.jp)
坪井明人 筑波大
URLリンク(math.tsukuba.ac.jp)
坪井明人
11 整列集合
定義 88(整列順序)順序集合 (X, <) が整列集合(あ
るいは整列順序集合)であるとは,空でない任意の
A ⊂ X の中に(A の)最小元が存在することである.
注意 89 整列集合は全順序集合である.全順序集合
であることは,2元集合 A = {x, y} に必ず最小元が
存在することからわかる.
例 90
1. (N, <) は整列集合である.
2. (Z, <) は(全順序集合であるが)整列集合でない.
3. 有限の全順序集合は整列集合になる.
関数 f : N → X は X の元からなる無限列と考えられる.
無限列は (an)n∈N などで表す.
定義 91 (X, <) を順序集合とする.X の元の無限列
(an)n∈N が無限降下列であるとは,任意の n ∈ N に対して,
an+1 < an が成立することである.
例 92 1. Z における数列 (an)n∈N を an = ?n で定めると,無限降下列である.
2. N の中には無限降下列は存在しない.
定理 93 (X, <) を順序集合とする.このとき次は同値である:
1. (X, <) は整列集合である;
2. (X, <) は全順序集合で,なおかつ無限降下列を持たない.
証明: 1 ⇒ 2: (X, <) を整列集合とする.全順序
集合になることは既に調べた.X の中に無限降下
列 (an)n∈N が存在したとしよう.このとき,集合
A = {an : n ∈ N} ⊂ X は最小元を持たない.これ
は X が整列集合であることに反する.
2 ⇒ 1: 2 を仮定する.空でない A ⊂ X を任意に
とる.A に最小元が存在することを示そう.a0 ∈ A
を選ぶ.これが A の最小元ならば議論は終了する.
そうでなければ,a1 ∈ A, a1 < a0 が存在する.a1
が最小元ならば議論は終了するので,再び a2 ∈ A,
a2 < a1 が存在する.以下同様に A の元 an を
a0 > a1 > a2 > ・ ・ ・ an?1 > an
となるように選ぶ.A は無限降下列を持たないので,
この構成はいつか止まる.すなわち,ある n に対し
て an ∈ A が最小元になる.
(引用終り)
以上

117:第六天魔王
19/10/06 08:47:43.51 zyaquwkF.net
なんだ、この馬鹿、調子ぶっこいて、新スレ立ち上げやがったんだ
飛んで火にいる夏の虫 とはこのことだwwwwwww

118:第六天魔王
19/10/06 08:57:10.46 zyaquwkF.net
>>110
>無限公理でできた最小に絞る前の無限集合には、
>真に無限の{・・・{Φ}・・・}なる
>無限多重カッコ{}の集合が含まれていることは
>明白ですね
馬鹿が勝手な妄想してやがるwww
もとの文章でいってるのは、
無限公理だと{}を含むとかxを含めば{x}を含むとかいってるだけで
余計な元を含まないという記述がないから、追加の公理で
余計な元がないようにする、ってことだろ
無限公理で必ず”無限多重カッコ{}の集合”が入るなんていえないし
そういう集合は、さんざん言われてるように正則性公理に反する
馬鹿が理解できないだけwwwwwww

119:第六天魔王
19/10/06 09:04:29.32 zyaquwkF.net
>>112
集積点? 極限順序数のことか? 
そんなもん別にあってもかまわんぞ
極限順序数には直前の元はない
例えばωにはωー1なんてない
つまりω>nとなる元は有限
だから
ω>n>n-1・・・2>1>0
なる列は必ず有限長
こんな基本


120:的なことも理解できない馬鹿が 超限帰納法とかほざいてたとか、噴飯ものwwwwwww



121:哀れな素人
19/10/06 09:08:03.00 aAisPx0D.net
ID:zyaquwkF
このチンピラ臭丸出しの文章はサル石だろう(笑
サル石という名前が知られ始めたので
第六天魔王と名前を変えたのだろう(笑

122:哀れな素人
19/10/06 09:11:13.57 aAisPx0D.net
このスレの読者よ、第六天魔王とは
サル石という2ch有数の噛みつき魔である(笑
よく覚えておくように(笑

123:第六天魔王
19/10/06 09:23:00.54 zyaquwkF.net
>>116-117
なんだ、安達のジジイ、まだ生きてたのか?
お前みたいな耄碌爺、相手にする時間がもったいない
とはいえ、せっかくだからなぜ「第六天魔王」を名乗ったのか教えてやろう
第六天魔王というのは仏教でいうところの「仏道修行を妨げている魔」だな
キリスト教でいうサタンみたいなもんだ
というと、なんかここの馬鹿が釈迦みたいに聞こえるが
もちろん、トンデモ野郎がそんな有難いもんじゃない
昔、武田信玄が織田信長への手紙で
「天台座主沙門信玄」
とか中二病丸出しな署名をしてきやがったので
信長が面白がって、返事に
「第六天魔王信長」
と署名したとか
ここではそれを丸ごと頂いたまで
パクリじゃないぞ オマージュってやつだwwwwwww

124:哀れな素人
19/10/06 09:29:02.76 aAisPx0D.net
↑見ろ、このアホのチンピラ臭丸出しの文章(笑
これがサル石という男である(笑
相手かまわず誰にでも噛みつく(笑
在日同和の低学歴バカだから
他人に噛みつきたくて噛みつきたくてたまらない(笑
噛みつかないと気が済まない(笑
一種の精神病者(笑
このスレの読者よ、こいつは下記スレで何年間も
スレ主に噛みついている男である。下記スレを見れば分る(笑
朝から真夜中まで一日中、毎日毎日何年間も噛みついている(笑
現代数学の系譜 工学物理雑談 古典ガロア理論も読む
スレリンク(math板)

125:第六天魔王
19/10/06 09:33:04.88 zyaquwkF.net
>>119
>相手かまわず誰にでも噛みつく
いや、安達、貴様には関わらんよ
さすがの俺も、認知症のジジイをいたぶるほど、悪党じゃないwww

126:哀れな素人
19/10/06 09:37:31.45 aAisPx0D.net
↑こうしてアホのくせに虚勢を張る(笑
日大卒のくせにパリ高等師範学校卒とか
東大理学部数学科卒と自称していたアホである(笑
ついに噛みつき魔の本性を隠しきれなくなって、本性全開(笑
噛みつきたくて噛みつきたくてたまらない精神異常者である(笑

127:哀れな素人
19/10/06 09:39:05.06 aAisPx0D.net
こいつがどれほど異常な男であるかというと、
たとえばこういう投稿をしている男だ。
牛は日本ではキャプティブボルト(屠畜銃)を眉間に打ち、
失神させ、片足を釣り上げて逆さ吊りにして、
喉を切り裂いて失血死させる。
失神は失敗することもあるし、
首を切られてから意識を取り戻すこともある。
これは豚も同じことだ。
首掻き切るか?なんならオレが斬ってやろうか
これは単なる食肉加工 罪悪感?そんなもんないよ
失神させ、片足を釣り上げて逆さ吊りにして、
喉を切り裂いて失血死させる。
実際に人を真っ二つに斬れたら
爽快極まりないだろう

128:哀れな素人
19/10/06 09:39:57.89 aAisPx0D.net
二日間に渡って狂気の860連投をした男である(笑
学歴に異常な虚栄心というか劣等感を持っていて、
日大卒のくせにパリ高等師範学校卒とか
東大理学部数学科卒と自称していたアホである(笑
在日か同和で、アイヌでもないのにアイヌを自称して
アイヌ特権で甘い汁を吸っている疑いがある。
50代前半だが働かずに毎日2chに貼り付いている(笑
いい年してベビーメタルの大ファンで、
乃木坂とかAKBグループのファンでもある(笑

129:哀れな素人
19/10/06 09:42:02.70 aAisPx0D.net
サル石の好む語彙
サル、畜生、貴様、ナイーブ、idiot  肉、豚の丸焼き、サタン
アイドル・ロック・ヘビメタ  クロポトキン・アナーキスト・革命
ギャハハハハ!!!  かっけぇぇぇぇぇ!!!
ワロスwwwwwww  っぷ これは酷い (^^;
ちょっと何いってるのかわからないんですけど…
キモチ悪い (をひ) 腐った爺頭
こういう語を使っていればサル石だ(笑
最初は、ばれないように、こういう語は使わなかったが、
もう開き直って本性全開(笑

130:第六天魔王
19/10/06 09:43:15.65 zyaquwkF.net
>>122
なに 怯えてるんだ、安達
安心しろ 貴様の頭蓋骨を盃にして酒飲むほど悪趣味じゃない
ま、馬鹿の脳味噌でブレインマサラ作って食ってみたいけどな
URLリンク(www.favy.jp)

131:哀れな素人
19/10/06 09:47:58.58 aAisPx0D.net
>なに 怯えてるんだ、安達
アホのくせに虚勢を張る(笑
怯えているのはこいつなのに(笑
>安心しろ 貴様の頭蓋骨を盃にして酒飲むほど悪趣味じゃない
>ま、馬鹿の脳味噌でブレインマサラ作って食ってみたいけどな
こういう文章にこの男の異常性が現れている(笑
人肉嗜食願望さえ抱いている異常者である(笑
嘘だと思うならガロアスレのこいつの過去レスを見れば分る(笑

132:132人目の素数さん
19/10/06 09:49:14.34 Gc2q5hFd.net
>>110

> で、N={Φ, {Φ}, {{Φ}}, …}で、自然数の集合Nができるけど
> 無限公理で最初は、Nよりも大きな集合ができるんですよね、確か(下記wiki)
>
> それを、最小の無限集合に絞って小さくする操作が必要です
> 最小の無限集合に絞った結果、Nには有限の元nしか含まれないものができる
>
そうです。
ωの存在を公理としても良いけど公理はなるべく簡潔である方が好まれるのでそのようにしています。
そうしないといけないわけではありませんが。
具体的には例えば
ω' を
0∈ω' 、n∈ω' ⇒ n+1∈ω'
を満たすものに取れる。(∵無限公理)
ωを
ω={x∈ω' | xは有限集合かつ順序数}
と置くとωは自然数全体からなる集合となる。(∵分出公理)
QED.
のように証明できます。
ZFはBGより対象の範囲が狭く公理も弱いのでこのような構成になります。
BGなら>>18のようにもっと直接的に行けます。
(無限公理ももっと弱く取れる)
もしΩの存在も示せるというなら示してください。
それ以前にまずΩを定義して下さい。

133:第六天魔王
19/10/06 09:49:45.09 zyaquwkF.net
>>123
>いい年してベビーメタルの大ファンで、
安達、いいタイミングでいってくれたな
10/11にBABYMETALの3rd Album"Metal Galaxy"が出るぞ
聴きやがれw
>乃木坂とかAKBグループのファンでもある
悪いが、そっちはそれほど興味ないwww
乃木坂はSU-METALの姉がいたからチェックしてただけ
しかしどいつもこいつもカスばかり・・・
但し生田絵梨花と久保史緒里は除くw
BABYMETALに一番近いのは・・・ももクロかもな
少なくとも百田夏菜子のエビぞりジャンプは
アイドル史に残る名パフォーマンス

134:哀れな素人
19/10/06 09:51:55.72 aAisPx0D.net
このスレの読者よ
現代数学の系譜 工学物理雑談 古典ガロア理論も読む
スレリンク(math板)
このスレでこいつは今日も朝っぱらからスレ主に噛みついている(笑
毎朝6:30頃から真夜中まで、毎日毎日何年間もだ(笑
正真正銘の変質者である(笑

135:ID:1lEWVa2s
19/10/06 09:52:33.52 Hf8pbZj7.net
>>128
あれこっちかなそっちかな
さてどこどこどこでしょう

136:ID:1lEWVa2s
19/10/06 09:54:27.57 Hf8pbZj7.net
キチガイと言われたからには第六天魔王に仲間入りしたい

137:哀れな素人
19/10/06 09:54:48.57 aAisPx0D.net
>>128
もう開き直って本性全開(笑
これがサル石という日大卒の低学歴親父(笑

138:第六天魔王
19/10/06 09:56:39.68 zyaquwkF.net
>>127
>もしΩの存在も示せるというなら示してください。
>それ以前にまずΩを定義して下さい。
まあ、しかし、馬鹿には無理だろう
なぜツェルメロの自然数構成法が放棄されたか
馬鹿には死んでも理解できまい
要するに(超限順序数への)拡張性がなかったわけだな

139:哀れな素人
19/10/06 09:56:47.15 aAisPx0D.net
ID:Hf8pbZj7
これはサル石の自演かも(笑
とにかくやることがないから狂ったように連投する(笑

140:第六天魔王
19/10/06 10:00:16.99 zyaquwkF.net
>>130-131
余の小者として仕えるがよい
綽名は「ハゲネズミ」な
(秀吉かよw)

141:ID:1lEWVa2s
19/10/06 10:01:03.48 qO9bhJ7s.net
>>134
違う 2ch 嫌儲に18-20歳の荷揚げ屋の頃からいたから
こういうのみると参加する癖がある。

142:哀れな素人
19/10/06 10:02:22.55 aAisPx0D.net
↑在日同和の低学歴バカ丸出し(笑

143:ID:1lEWVa2s
19/10/06 10:02:47.34 qO9bhJ7s.net
ハゲネズミってノートに書いておく

144:ID:1lEWVa2s
19/10/06 10:05:16.64 qO9bhJ7s.net
>>137
え。日本数学会事務局に担当者いるんですが。
しかも、フェルマー最終定理についてのスレ主だし。
素数の式も惜しいとこまできてて何通か送った。素数の性質について。
ここでは教えれない
知りたければ日本数学会事務局に行って
梅田悠祐君の手紙を読ませて頂けますかと言えばいい。
日本数学会事務局にも姫はいるからセクハラ行為するなよ

145:哀れな素人
19/10/06 10:16:24.65 aAisPx0D.net
>>137>>135へのレス(笑
お前へのレスではない(笑

146:哀れな素人
19/10/06 10:32:16.77 aAisPx0D.net
このスレのまともな読者へ
このサル石というバカは知ったかぶりして知識を衒っているが、
こいつがどれほどのバカかというと、
ケーキを半分に切って食べるという行為を繰り返せば
ケーキを食べ尽くすことができるか否か、
という問いに対して、自信満々に何度もこう答え続けた(笑
ケーキを食べ尽くすことができる。
1/2+1/4+1/8……は1になる。
半分のケーキを一瞬で食べれば
一秒後にはケーキは無くなっている。
1/2のケーキを1/2秒で、1/4のケーキを1/4秒で……
食べれば1秒後にはケーキは無くなっている。
最初の量が1だから1になる。
こういう度し難いアホである(笑
そのことをよく覚えておくように(笑

147:ID:1lEWVa2s
19/10/06 10:33:53.35 r/6QhAbY.net
私が守る対象と範囲は馬鹿と牛さん🐮達だけだ。

148:哀れな素人
19/10/06 10:36:38.39 aAisPx0D.net
↓これもサル石のアホレス(笑
>無限集合は、0から1ずつ増やすのとは別の方法で実現される。
>nは∞にならないが、nを完了させることができる。
>0.99999……は最初から無限桁あるから、9を増やす必要はない。
その他、こいつのアホレスを数えれば限がない(笑
ま、ωなどを論じている時点で、
このスレの人間は全員がアホであるが(笑

149:ID:1lEWVa2s
19/10/06 10:42:54.64 r/6QhAbY.net
数学の基礎って本にωこれ出てきてそっ閉じした
恐らく正しいこと言ってるし
著者がインドの直感数学をつねってたから
ちゃんと奇抜な数学から元に戻して貰えるはず。
ただ、これは論理学や集合論だから
全ていっきに分かってしまう恐れがある。
手を出しちゃいけない。
著者も望んでいない。数学で逝ってしまうなんて。

150:ID:1lEWVa2s
19/10/06 10:43:08.39 r/6QhAbY.net
昭和の本

151:ID:1lEWVa2s
19/10/06 10:45:07.84 r/6QhAbY.net
>>144
数学で逝く人は沢山居る。
望月新一とか。さんね。

152:ID:1lEWVa2s
19/10/06 10:45:50.72 r/6QhAbY.net
バイバイアルネー望月新一さん。

153:ID:1lEWVa2s
19/10/06 10:50:03.30 r/6QhAbY.net
ユークリッド原論も命題1-1以上いけない。
あんなん人間にできる技じゃないよ。

154:ID:1lEWVa2s
19/10/06 10:52:06.35 r/6QhAbY.net
ユークリッド原論
聖書の次に読まれた本
聖書が一番多い
だから二番目
昔のスタンフォード大学では1-7以上いけなかったらしい。
それで何か名前が付いたと言っていた

155:現代数学の系譜 雑談
19/10/06 10:54:12.47 d8OQiN+r.net
>>112 参考
先のPDFは2 学期で、下記のPDF1学期の続きだな
URLリンク(www.math.tsukuba.ac.jp)
集合入門 坪井明人 筑波大
(抜粋)
1学期
1. 高校の復習など
2. ベキ集合,直積集合
3. 2項関係その1(同値関係,同値類,分割)
4. 2項関係その2(擬順序,順序)
5. 関数その1
6. 関数その2
7. 全順序集合
8. 数の構成その1(N から Z を構成する)
9. 数の構成その2(Z から Q を構成する)
10. 数の構成その3(時間があれば Q から R の
構成)
2 学期
1. 整列集合,辞書式順序
2. 超限帰納法
3. 選択公理
4. Zorn の補題
5. 整列可能性定理
6. ベルンシュタインの定理
7. 可算集合
8. 対角線論法
9. 集合の大きさと濃度
以上が2学期間で講義するおおまかな内容を列挙し
たものである.

156:現代数学の系譜 雑談
19/10/06 11:23:00.82 d8OQiN+r.net
>>110 補足
>Infinity
>This final axiom asserts the existence of an infinitely large set which contains the empty set, and for each set a that it contains, also contains the set {a}.
> (Thus, this infinite set must contain Φ, {Φ}, {{Φ}}, ….)
で、N={Φ, {Φ}, {{Φ}}, …}で、自然数の集合Nができるけど
無限公理で最初は、Nよりも大きな集合ができるんですよね、確か(下記wiki)
(引用終り)
ツェルメロ構成で、aの後者関数:suc(a) := {a} なので
上記、set a に対して set {a}が必ず属するという、無限公理の規定の仕方をしているのかな?
(原典まで確認していないが)
ノイマン流では、で、aの後者関数:suc(a) := a∪{a} なので
この場合の無限公理は、set a に対して a∪{a}が必ず属すると規定される
まあ、自然数nに対しその後者n+1が必ず属する集合Nが存在という意味だな
このNは、我々の望む自然数n以上のものを含む。というか、含んでも無限公理上はしかたない
だから、あとから不要なもの(後者)を排除するしかない
では、不要なもの(後者)とは何か? 我々の望むものは、自然数n(有限)のすべて
だから、不要なもの(後者)とは、有限を超えたものであって、真に無限のもの
ツェルメロ構成では、真に無限の{・・・{Φ}・・・}なる無限多重カッコ{}の集合たちですね
URLリンク(ja.wikipedia.org)
自然数
以上の構成は、自然数を表すのに有用で便利そうな定義を選んだひとつの結果であり、他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。
例えば、0 := {}, suc(a) := {a} と定義したならば、
 ・
 ・
と非常に単純な自然数になる。
URLリンク(ja.wikipedia.org)
無限公理
(抜粋)
定義
ZF公理系における公式な定義は次の通りである。
空集合を要素とし、任意の要素 x に対して x ∪ {x} を要素に持つ集合が存在する:
∃A(Φ∈A∧∀x∈A(x∪{x}∈A))

157:132人目の素数さん
19/10/06 11:34:36.37 1g2Hn04k.net
>>151
> では、不要なもの(後者)とは何か? 我々の望むものは、自然数n(有限)のすべて
> だから、不要なもの(後者)とは、有限を超えたものであって、真に無限のもの
> ツェルメロ構成では、真に無限の{・・・{Φ}・・・}なる無限多重カッコ{}の集合たちですね
>
違いますよ。もし
n+1:={n}
と定義した場合は無限公理が保証してくれる無限集合をω'とした時、これは
n∈ω'⇒n+1∈ω'
を満たしていないからさらに議論が難しくなります。



158:それでも自然数全体を定義し、存在する事を証明する事はできますが、しかしそれはあくまで{0,1,2,‥‥}であって、あなたの求めるΩではありません。 証明をがどうこう考える以前にそもそもΩとは何かが定義されてないのに、それが存在する証明ができるはずありません。



159:132人目の素数さん
19/10/06 11:52:13.47 9PvOfF3Z.net
>>151
>まあ、自然数nに対しその後者n+1が必ず属する集合Nが存在という意味だな
>このNは、我々の望む自然数n以上のものを含む。というか、含んでも無限公理上はしかたない
>だから、あとから不要なもの(後者)を排除するしかない
>では、不要なもの(後者)とは何か? 我々の望むものは、自然数n(有限)のすべて
>だから、不要なもの(後者)とは、有限を超えたものであって、真に無限のもの
>ツェルメロ構成では、真に無限の{・・・{Φ}・・・}なる無限多重カッコ{}の集合たちですね
これは酷い

160:現代数学の系譜 雑談
19/10/06 12:48:48.24 d8OQiN+r.net
>>151 追加
von Neumannで、自然数Nが構成できる(下記)
無限降下列
0∈1∈2・・∈N
が出来る
無限公理によりできる集合N’には、自然数N以上の無限大の後者が含まれている
そこから、不要元をそぎ落として、自然数Nにする
集合N’が、正則性公理に反するだと?(゜ロ゜;
(参考)
URLリンク(hc3.seikyou.ne.jp)
平成26年度教員免許状更新講習テキスト
「数の体系」講師:牧野 哲 (山口大学工学部教授)2014 年 6 月 22 日
(抜粋)
P3
1.3 自然数系の(本質的)一意性
自然数系の標準的な代表として用いることにして,これを N と記す。
他の自然数系はみな,N に同型である。
P4
集合論から自然数系を構成する方法としては,
von Neumann の方法が知られている。
これは,
0 := Φ(空集合), 1 := {Φ}, 2 := {Φ, {Φ}}, ・ ・ ・ , s(n) := {0, 1, 2, ・ ・ ・ , n}, ・ ・ ・
とする。
また,Zermero の方法は,
0 := Φ, 1 := {Φ}, 2 := {{Φ}}, ・ ・ ・ , s(n) = {n}, ・ ・ ・
とする。
前者では,たとえば,3 ∈ 5 であるが,
後者では 3 not∈ 5 となり,
同じではないが,
どちらが優れているとも云いがたい。
(引用終り)

161:現代数学の系譜 雑談
19/10/06 13:05:38.30 d8OQiN+r.net
>>154 追加
さて、上記von Neumannで、自然数Nが構成できる
無限降下列
0∈1∈2・・∈N・・∈N’
とでも書きますかね
0∈1∈2・・∈N・・∈N’の部分は無限長
0∈1∈2・・∈N’の部分も無限長
上段が、正則性公理でだめなら
下段も、正則性公理でだめ(^^
そもそも、順序数は無限なのだから、正則性公理で規制されるものではない
ところで、下記の「濃度と順序数 fujidig」では
”無限強単調減少列
x0 > x1 > x2 > . . . ”
という用語を使っています(^^
この用語が適切かどうか不明だが
「濃度と順序数 fujidig」では、最小元を持たない無限単調減少列という意味でしょう
(文学的表現では、底抜けってことですね)
一方、順序数での数列には、必ず最小元を持つ。それが、無限列であっても
正則性公理で禁止しているのは、明らかに、底抜けの最小元を持たない無限単調減少列です
最小元を持つ、上昇する無限列を禁止するものではない!(^^
URLリンク(fujidig.github.io)
でぃぐのページ ハンドルネーム: fujidig
URLリンク(fujidig.github.io)
濃度と順序数 fujidig
June 21, 2016
(抜粋)
P15
順序数というのは自然数が持つ「番号を振る」という目的を無限方向に拡張したものだといえる.
P16
・整列集合 N の型は ω と書かれる.これは最小の無限順序数である.
・順序数を小さい方から順に並べると
0, 1, 2, 3, . . . , ω, ω + 1, ω + 2, ω + 3, . . . , ω2, ω2 + 1, . . . となる
・今並べたのは順序数のうちほんの小さい部分にすぎない.もっと大きい順序数がまだまだある
P17
命題 4
整列集合 X から無限強単調減少列
x0 > x1 > x2 > . . . はとれない.
証明.
x0 > x1 > x2 > . . . がとれると仮定する.
すると X の部分集合
{x0, x1, x2, . . . } には最小元がないため整列性に反する.
P18
命題 5
順序集合 X ≠ Φ が整列集合であるために
は,全順序集合であって無限強単調減少列
x0 > x1 > x2 > . . . がとれないことが
必要十分.

162:132人目の素数さん
19/10/06 13:12:10.67 9PvOfF3Z.net
>>154
これは酷い

163:132人目の素数さん
19/10/06 13:12:53.23 9PvOfF3Z.net
>>155
これは酷い

164:現代数学の系譜 雑談
19/10/06 13:15:33.50 d8OQiN+r.net
>>128
どうも、ガロアスレのスレ主です(^^
(引用開始)
>いい年してベビーメタルの大ファンで、
安達、いいタイミングでいってくれたな
(引用終り)
なるほど
おサルさんか(^^

165:現代数学の系譜 雑談
19/10/06 13:21:36.72 d8OQiN+r.net
>>155 補足
>この用語が適切かどうか不明だが
>「濃度と順序数 fujidig」では、最小元を持たない無限単調減少列という意味でしょう
>(文学的表現では、底抜けってことですね)
そういう目で見ると
 >>112 坪井明人 筑波大 11 整列集合
”定理 93 (X, <) を順序集合とする.このとき次は同値である:
1. (X, <) は整列集合である;
2. (X, <) は全順序集合で,なおかつ無限降下列を持たない.”
の証明を読むと、明らかに、無限降下列=底抜けの最小元を持たない無限単調減少列の意味ですね
もちろん、>>155 「濃度と順序数 fujidig」さんのP17 命題 4
”整列集合 X から無限強単調減少列”もこの意味
証明で
”x0 > x1 > x2 > . . . がとれると仮定する.
すると X の部分集合
{x0, x1, x2, . . . } には最小元がないため整列性に反する.”と書いてありますからね(^^

166:現代数学の系譜 雑談
19/10/06 13:26:06.86 d8OQiN+r.net
>>159 つづき
なので、正則性公理にいう
”無限下降列である x∋x1∋x2∋・・・ ”は
底抜けの最小元を持たない無限単調減少列の意味ですね(^^
これを、取り違えて
最小元を持つ、順序数の無限列に適用して、
「正則性公理に反する」とかは、いけませんね(^^
(参考)
URLリンク(ja.wikipedia.org)
正則性公理
(抜粋)
以下の4つの主張はいずれも同値であり、どれを正則性の公理として採用しても差し支えない。
・任意の空でない集合xに対して、∃y∈x,x∩y=0
・∀xについて、∈がx上well-founded
・∀xについて、無限下降列である x∋x1∋x2∋・・・ は存在しない。
(引用終り)

167:132人目の素数さん
19/10/06 13:29:03.29 9PvOfF3Z.net
ωから始まる∈無限降下列が存在すると言いたいなら、その列の第2項(ωの次の項)を示して下さい

168:現代数学の系譜 雑談
19/10/06 13:38:42.40 d8OQiN+r.net
>>151 補足
ツェルメロの自然数構成で
0:Φ
1:{Φ}
2:{{Φ}}
 ・
 ・
n:{・・{Φ}・・} n重
これで、全ての有限の自然数は構成できる
無限公理で、Nとωが出来たあとに、
ω:{・・{Φ}・・} ω重 (ωは、下記のwikipedia定義に従う)
と定義すれば良い
下記、順序数「すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である」
但し、下記”順序型というアイデア”を使う
QED
URLリンク(ja.wikipedia.org)
順序数
(抜粋)
次が成り立つ:
5.順序数からなる空でない集合には必ず最小元が存在する
順序数の並び方を次のように図示することができる:
0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............
まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。
そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく。
注釈
^ 順序数は本来、上で述べた定義とは異なる仕方で定義されていた。
その定義とは、順序集合全体の集まりを「同型である」という "同値関係" によって類別したとき、順序集合 (A, <) の "同値類" を (A, <) の順序型(order type)と呼び、特に整列集合の順序型を順序数と呼ぶというものである。
ところが現代の標準的な集合論においては、A が空集合でない限り (A, <) と同型な順序集合全体の集合といったものは存在しないことが示される。
したがって、このような順序数の定義の仕方は正当な方法であるとは認められない。
これを克服するために考えられたのが上で述べた定義であり、現在は上の定義(あるいはそれと同値な定義)が広く用いられている。
だが、順序型というアイデア自体が排除されたわけではない。順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できるということが知られている。
ただし、整列集合の順序型と順序数は別のものになる。
(引用終り)

169:現代数学の系譜 雑談
19/10/06 13:42:28.53 d8OQiN+r.net
>>161
>ωから始まる∈無限降下列が存在すると言いたいなら、その列の第2項(ωの次の項)を示して下さい
その質問は、哀れな素人さんの無限に関する質問に類似
ノイマン構成が理解でていませんね
どうぞ、大学教員に質問願います
高校教員でもいいかもね(>>154 平成26年度教員免許状更新講習テキスト 「数の体系」講師:牧野 哲)

170:現代数学の系譜 雑談
19/10/06 13:53:05.04 d8OQiN+r.net
>>163 補足
>ωから始まる∈無限降下列が存在すると言いたいなら、その列の第2項(ωの次の項)を示して下さい
(>>154


171:より) von Neumannで、自然数Nが構成できる(下記) 無限降下列 0∈1∈2・・∈N ノイマン構成では、N=ωです ωが、極限順序数で、位相的に集積点(極限点)であり、任意の近傍が S の点を無限に含むということを、ご理解ください 特に、”任意の近傍が S の点を無限に含む”が理解できないのかな? (参考) https://hc3.seikyou.ne.jp/home/Tetu.Makino/suu_no_taikei.pdf 平成26年度教員免許状更新講習テキスト 「数の体系」講師:牧野 哲 (山口大学工学部教授)2014 年 6 月 22 日 (抜粋) P4 集合論から自然数系を構成する方法としては, von Neumann の方法が知られている。 これは, 0 := Φ(空集合), 1 := {Φ}, 2 := {Φ, {Φ}}, ・ ・ ・ , s(n) := {0, 1, 2, ・ ・ ・ , n}, ・ ・ ・ https://ja.wikipedia.org/wiki/%E6%A5%B5%E9%99%90%E9%A0%86%E5%BA%8F%E6%95%B0 極限順序数 (抜粋) 任意の自然数よりも大きい最小の超限順序数 ω は、それよりも小さい任意の順序数(つまり自然数)n が常にそれよりも大きい別の自然数(なかんずく n + 1)を持つから、極限順序数である。 ・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。 https://ja.wikipedia.org/wiki/%E9%9B%86%E7%A9%8D%E7%82%B9 集積点/極限点 (抜粋) 定義 位相空間 X の部分集合 S に対し、X の点 x が S の集積点であるとは、x を含む任意の開集合が少なくとも一つの x と異なる S の点を含むことを指す この条件は T1-空間においては、x の任意の近傍が S の点を無限に含むという条件に同値である https://ja.wikipedia.org/wiki/T1%E7%A9%BA%E9%96%93 T1空間 (抜粋) X が T1-空間であるとは、X の任意の相異なる二点が分離できるときに言う (引用終り)



172:現代数学の系譜 雑談
19/10/06 13:59:06.45 d8OQiN+r.net
>>164 追加
(参考)
現代数学はインチキだらけ より
スレリンク(math板:882番)-
URLリンク(ja.wikipedia.org)
整礎関係
(抜粋)
その他の性質
(X, <) が整礎関係で x が X の元ならば、x から始まる降鎖列は必ず長さ有限だが、これはこのような降鎖の長さが有界であるということを意味しない。
以下のような例を考えよう。X は正の整数全体の成す集合に、どの整数よりも大きな 整数ではない新しい元 ω を付け加えた集合とする。
このとき X は整礎だが、ω から始まる長さ有限の降鎖列でいくらでも長いものが取れる。なんとなれば、任意の正整数 n に対して
ω, n - 1, n - 2, ..., 2, 1
という鎖は長さ n を持つ。
モストウスキーの崩壊補題 (Mostowski collapse lemma) によれば、集合要素関係 (set membership) は普遍的な整礎関係である。つまり、クラス X 上の集合的な整礎関係 R に対し、クラス C が存在して、(X, R) が (C, ∈) に同型となる。
(引用終り)
(英語版)
URLリンク(en.wikipedia.org)
Well-founded relation
(抜粋)
Other properties
If (X, <) is a well-founded relation and x is an element of X, then the descending chains starting at x are all finite, but this does not mean that their lengths are necessarily bounded.
Consider the following example: Let X be the union of the positive integers and a new element ω, which is bigger than any integer.
Then X is a well-founded set, but there are descending chains starting at ω of arbitrary great (finite) length; the chain ω, n - 1, n - 2, ..., 2, 1 has length n for any n.
The Mostowski collapse lemma implies that set membership is a universal among the extensional well-founded relations: for any set-like well-founded relation R on a class X which is extensional, there exists a class C such that (X, R) is isomorphic to (C, ∈).
(引用終り)

173:132人目の素数さん
19/10/06 14:06:26.50 9PvOfF3Z.net
>>164
質問は「ωの次の項は何か?」です
講釈は要らないので単純に端的にωの次の項を答えて下さい

174:132人目の素数さん
19/10/06 14:13:31.28 9PvOfF3Z.net
>>163
ωから始まる∈無限降下列が存在すると主張しているのはあなたですから、質問に答えるべきもあなたです
答えられないからといって教員に聞けとか変なこと言わないで下さいね

175:現代数学の系譜 雑談
19/10/06 14:42:39.60 d8OQiN+r.net
>>166
√5 =~ 2.2360679・・・・・  富士山麓


176:オーム鳴く[ふじさんろくおーむなく] この数列の最後の数字は、0~9のどれでしょうか? これと類似の質問では? https://www.shinko-keirin.co.jp/keirinkan/kosu/mathematics/qanda/01-09.html 数学トピックQ&A 無理数の語呂合わせ √5 =~ 2.2360679・・・・・  富士山麓オーム鳴く[ふじさんろくおーむなく]



177:現代数学の系譜 雑談
19/10/06 14:44:12.72 d8OQiN+r.net
むかし、2Chと言っていた時代に
新聞だったかに、書かれていたのが
「大人だと思って書いていたら、相手は子供だった」という記述があるのを思い出しました

178:132人目の素数さん
19/10/06 14:58:43.61 9PvOfF3Z.net
>>168
これは酷い
数列 an には最後の項 a∞ はありません
一方第2項 a2 はあります
あなた基本的なことが全く分かってないですね

179:現代数学の系譜 雑談
19/10/06 15:34:34.04 d8OQiN+r.net
>>170
>数列 an には最後の項 a∞ はありません
>一方第2項 a2 はあります
これは酷い
 >>165より
”(X, <) が整礎関係で x が X の元ならば、x から始まる降鎖列は必ず長さ有限だが、これはこのような降鎖の長さが有界であるということを意味しない。
以下のような例を考えよう。X は正の整数全体の成す集合に、どの整数よりも大きな 整数ではない新しい元 ω を付け加えた集合とする。
このとき X は整礎だが、ω から始まる長さ有限の降鎖列でいくらでも長いものが取れる。なんとなれば、任意の正整数 n に対して
ω, n - 1, n - 2, ..., 2, 1
という鎖は長さ n を持つ。”
意味分かりますか?
 >>164より
(>>154より)
von Neumannで、自然数Nが構成できる(下記)
無限降下列
0∈1∈2・・∈N
ノイマン構成では、N=ωです
ωが、極限順序数で、位相的に集積点(極限点)であり、任意の近傍が S の点を無限に含むということを、ご理解ください
特に、”任意の近傍が S の点を無限に含む”が理解できないのかな?
意味分かりますか?
ええ、上記いずれの場合も、第1項 a1=ω はありますよ

180:132人目の素数さん
19/10/06 15:41:09.34 9PvOfF3Z.net
>>171
単純に端的に第2項だけ答えて下さい
講釈は結構だと言ったはずですよ?
>ええ、上記いずれの場合も、第1項 a1=ω はありますよ
私が聞いてるのは第2項ですw

181:現代数学の系譜 雑談
19/10/06 15:56:48.05 d8OQiN+r.net
>>154 追加
URLリンク(unaguna.jp)
U-naguna
シリーズ: 集合論の言葉を使おう (準備編) >
集合論の言葉による自然数の表現
(抜粋)
n の次の自然数を n∪{n} とする利点としては
・自然数 n に属するモノの個数は n となる
・自然数の大小関係 n<m が n∈m に一致する
ことが挙げられる。1つ目の方は後の記事で「個数とは何か」や「個数を数える (counting) とは何か」を定義する際に役立つ (今までなんとなく個数を数えてきたが、集合論の言葉でもう少しかっちりと定義することができる)。2つ目の方は、大小関係が集合論の記号だけで簡潔に表せるようになるという点で良い。
すべての自然数が属する集合
公理 2 (無限公理).

すなわち、「すべての自然数が属する集合」が存在する。
ここで注意すべきは、この公理で存在が証明されるのは「すべての自然数が属する集合」であって、「すべての自然数が属して、それ以外のモノが属さない集合」ではない。あくまで「すべての自然数が属する集合」が1つは存在すると言っているのである。
以降では「すべての自然数が属して、それ以外のモノが属さない集合」を「自然数集合」と呼び ω と書くことにする (文脈によっては N で表すことも多いだろう)。
つづく

182:現代数学の系譜 雑談
19/10/06 15:57:33.13 d8OQiN+r.net
>>173
つづき
数学的帰納法
さて、ここで1つ根本的な問いとして「今作った ω は自然数集合として機能するのか」を問うてみる。言い換えると、「ω に属するモノだけで作られる自然数と言う構造が、素朴な意味で自然数と呼んでいるモノが担っていた役割をすべてこなせるのか」ということだ。
ただ、この問題にまじめに解答しようとしたら、先ほど棚上げした ω の存在証明に触れなくてはならない。そこで、ここでもやはり理屈を抜きにして「ω は自然数が果たすべき役割をひととおり果たせる」と結論だけ述べる。
余談
ここで用いられている自然数の定義はよく知られ用いられている。それを前提として下の記述を見てみよう。
1∈3
高校数学の知識では「3は集合ではないので ∈ の右側に 3 を書くのはおかしい」となるのであろうが、我々が採用した「すべてのモノは集合である」論理では 3 も集合として定義しているのでその指摘は当たらない。
しかも、3 は {0,1,2} (0と1と2だけが属する集合) と定義されているので 1∈3 (1は3に属する)


183: は正しい。 この点で微妙に高校数学の集合論と公理的集合論 (とりわけ ZF 公理系や ZFC 公理系を採用する集合論) には違いがある。 (引用終り)



184:現代数学の系譜 雑談
19/10/06 16:07:45.71 d8OQiN+r.net
>>102 追加
>(b) the existence, for any object a, of the singleton set {a} which has a as its sole member; and
この”for any object a, of the singleton set {a}”
は、ZFCでは、対の公理だね
a → {a}が言える
(参考)
URLリンク(ja.wikipedia.org)
対の公理
(抜粋)
性質
外延性の公理により、任意のx,yに対しその対が一意に定まる。その集合のことを{x,y}と記す。 また同じく外延性より、x=yの場合における対{x,x}は一元集合{x}に等しいので、単集合の存在も導くことができる。
他の公理との関係
対の公理はZF公理系の他の公理と独立ではない。すなわち、置換公理および「濃度が2以上の集合の存在」から、任意のx,yに対する対{x,y}の存在を導ける(濃度が2以上の集合の存在については、無限公理、あるいは空集合の公理と冪集合の公理の組み合わせから導くことができる)。 そのため対の公理は、公理系を記述する際に省略されることもある。
URLリンク(unaguna.jp)
シリーズ: 集合論の言葉を使おう (準備編) >
外延的記法 (対の公理と和集合の公理)
対の公理
公理 1 (対の公理).
∀x∀y∃z∀w[w∈z←→w=x∨w=y]
すなわち、いかなるモノ (集合) x, y についても、「x と y だけが属する集合」が存在する。
まさに書いてあるとおりで、この対の公理によって上で挙げた「1と2だけが属する集合」が存在するのである。この対の公理を使うことで、2つのモノ (集合) だけが属する集合はひととおり存在が証明される。
また、1つのモノ (集合) だけが属する集合の存在も対の公理から証明できる。というのも、対の公理では x と y が同じでないことは要求してないので、たとえば「3と3だけが属する集合」である {3,3} も対の公理により存在する。
そしてこの {3,3} と「3だけが属する集合」である {3} を比較すると、3が両方の集合に属していてそれ以外のモノはいずれにも属していないので、どちらか一方にしか属していないモノは存在しない。
よって外延性の公理より {3,3} と {3} は同じ集合である。
したがって、対の公理により {3,3} の存在が示されるということは、{3} の存在が示されるということと同義である。
(引用終り)

185:現代数学の系譜 雑談
19/10/06 16:13:20.37 d8OQiN+r.net
>>175 補足
ツェルメロの the singleton set {a} の公理
あるいは
ZFCの対の公理より
任意のaから、{}を一つ加えた集合{a}の存在が言える
これは、当たり前のことだが、公理だから、普通に考えて、無制限(^^
正則性公理の無限降下列に反するだ~?
無限降下列の意味を取り違えているでしょ!(>>160より)

186:132人目の素数さん
19/10/06 16:32:18.72 9PvOfF3Z.net
思った通り逃げましたねw
いいですよ?逃げても
その代わり「ωから始まる∈無限降下列の存在」は間違いだったと認めて下さいね
第2項は答えないが間違いも認めない は駄々っ子のすることです
幼稚園からやり直しますか?

187:132人目の素数さん
19/10/06 18:31:31.23 Gc2q5hFd.net
>>162
> >>151 補足
> ツェルメロの自然数構成で
> 0:Φ
> 1:{Φ}
> 2:{{Φ}}
>  ・
>  ・
> n:{・・{Φ}・・} n重
> これで、全ての有限の自然数は構成できる
> 無限公理で、Nとωが出来たあとに、
> ω:{・・{Φ}・・} ω重 (ωは、下記のwikipedia定義に従う)
> と定義すれば良い
> 下記、順序数「すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である」
> 但し、下記”順序型というアイデア”を使う
> QED
と定義すれば良いって定義になってないでしょ?
この場合
X∈Ω
と同値であるXについての条件を書き下さねばなりません。
それはなんですか?
アイデアがあるならそれに従って定義を書き下してください。このアイデアにそってやればできるなんて証明は通用しません。

188:132人目の素数さん
19/10/06 19:15:09.85 9PvOfF3Z.net
> ω:{・・{Φ}・・} ω重 (ωは、下記のwikipedia定義に従う)

自分で何言ってるか分かってる?

189:現代数学の系譜 雑談
19/10/06 20:18:43.44 d8OQiN+r.net
>>175
商集合は、分出公理を使うのか
URLリンク(unaguna.jp)
U-naguna
シリーズ: 集合論の言葉を使おう (準備編) > 同値関係と同値類
(抜粋)
同値類
例として「偶奇という点で同じ」ことを表す同値関係を定義しよう。その場合たとえば
M={?x,y?∈ω×ω?∃z∃w[x+2z=y+2w]}
と定義すればよい (
この定義の下では xMy であることと、x+2z=y+2w を満たす自然数 z, w が存在すること (x と y が2の倍数加算の違い�


190:怩「て一致すること) が一致する。 定理 2.上で定義した関係 M は同値関係である。 M の定義文の中の 2 の部分を他の非零自然数 n に変えることで「n で割った時の余りという点で同じ」ことを表す関係も作れる。自然数同士のそのような関係は n を法とする合同関係と呼ばれる。 2 の部分を 0 にすると、aMb と a=b が一致するので、通常の「等しい・同じ」を表す関係になる。 同値類 同値類は同値関係 R によって同じと見なされるモノだけがすべて属する集合である。例えば上で例示した ω 上の同値関係 M の同値類を考えると Mo={1,3,5,7,9,…} Me={0,2,4,6,8,…} という二つの同値類がある。たとえば 1M3 だから 1 と 3 は同じ同値類に属し、2M3 ではないから 2 と 3 は異なる同値類に属する。 同値類は、それに属する1つの元を用いて表すことができる。R を x 上の同値関係としたとき、「a と同値なモノがすべて属し、そうでないモノは属さない集合」である {y∈x?yRa} は a の同値類と呼ばれ、[a] や [a]R と書く。 例えば上の Mo は「1が属する同値類」という意味で [1] とも表現する。 1が属する同値類と3が属する同値類は同じ Mo を指しているので [1]=[3] である。 この例の 1 や 3 のように同値類に属するモノのうち同値類の表現に使われたモノをその同値類の代表元とよぶ。 原則としてどのモノを代表元に選んでもよい。 商集合 商集合は、同値関係 R による同値類だけがすべて属する集合のことである。 つづく



191:現代数学の系譜 雑談
19/10/06 20:20:14.94 d8OQiN+r.net
>>180
つづき
定義 5 (商集合).R を x 上の同値関係とする。このとき、「R による同値類がすべて属し、それ以外のモノが属さない集合」である
{y∈P(x)?∃a[a∈x∧y=[a]R]}
を商集合とよび x/R と書く。
商集合は直感的な内包的記法を使えば
{[a]⊂x?a∈x}
とも書けるだろう。こう書くほうがどのような集合かわかりやすいかもしれない (分出公理によって存在が保障されることはわかりにくいが)。
上で例示した ω 上の同値関係 M について考えると、その同値類は Mo と Me の2つであったので、商集合は
ω/M={Mo,Me}
となる。適当に代表元を定めて
ω/M={[0],[1]}
とも書ける。
URLリンク(home.p07.itscom.net)
数学の基礎
19.素朴集合論とZF集合論
 さて、集合の概念で、最も便利な性質、すなわち任意に命題 P が与えられたとき、P を満たす x 全体の集合、というものを考えたいのですが、これをそのまま公理にしたのでは、Russellのパラドクスにより矛盾が生じてしまいます。
 そこで、通常の数学で、このような集合を考えたいときには、いつもどのような状況にあるかということを考えると、既に集合であることがわかっている a の元のうち、P を満たすようなもの全体からなる集合、というものを考えていることがわかります。そこで、分出公理:
∀a ∃b ∀x [ x∈b U ( x∈a ∧ P ) ]
を仮定しよう、という考え方があります。このような集合 b は、外延性公理により唯一つであることが証明できますから、これを { x∈a | P } と書きます。なお、ここで素直に「仮定します」と言わなかったのは、次のような、別の場面で必要となる公理があり、この分出公理はそこから導出できるからです。
つづく

192:現代数学の系譜 雑談
19/10/06 20:20:45.85 d8OQiN+r.net
>>181
つづき
 数学の議論では、変数 i を含む項 T と、集合 I があるとき、i∈I に対する T 全体からなる“集合”を考える、ということがしばしばあります。
 大抵の場合、i∈I のとき、T は i に無関係なある集合 A に属しているので、これを集合と見なすことは分出公理により正当化されるのですが、順序数の議論のような、集合論として“きわどい分野”での議論を行うときは、このような条件が成り立っていない場合があります。
 ところで、この場合の項 T は、集合 I の元 i に対してある対象 T を表してお


193:り、i に T を対応させる関数が与えられたとみなすことができます。  そこで、集合 I の関数による像 { T | i∈I } となる集合が存在すると言う意味の置換公理: [∀x ∀y ∀z ( ( P(x, y) ∧ P(x, z) ) → y = z ) ] → ∀a ∃b ∀y [ y∈b ⇔ ∃x ( x∈a ∧ P(x, y) )] を仮定します。  この公理は一見わかりにくい形をしていますが、左辺の ∀x ∀y ∀z ( ( P(x, y) ∧ P(x, z) ) → y = z ) というのは、x と y に関する関係 P(x, y) が一価関係であるということ、言い換えると、与えられた x に対して P(x, y) を満たす y を対応させる対応が x の関数になっていることを意味します。  従って、上の置換公理の述べるところは、一価関係 P が表す関数による集合 a の像となる集合が存在する、ということを意味しています。このような集合 b は、外延性公理により唯一つであることが証明できます。  さて、この置換公理を仮定すると、変数 y を含まない任意の命題 R に対して R ∧ x = y という命題を P(x, y) と書けば、これは明らかに一価関係です。 ゆえに、置換公理によって ∀a ∃b ∀y [ y∈b ⇔ ∃x ( x∈a ∧ R ∧ x = y ) ] すなわち ∀a ∃b ∀x [ x∈b ⇔ ( x∈a ∧ R ) ] となって、これは分出公理に他なりません。すなわち分出公理は置換公理から導出できるのです。 (引用終り) 以上



194:現代数学の系譜 雑談
19/10/06 20:24:47.04 d8OQiN+r.net
>>181 補足
> さて、集合の概念で、最も便利な性質、すなわち任意に命題 P が与えられたとき、P を満たす x 全体の集合、というものを考えたいのですが、これをそのまま公理にしたのでは、Russellのパラドクスにより矛盾が生じてしまいます。
> そこで、通常の数学で、このような集合を考えたいときには、いつもどのような状況にあるかということを考えると、既に集合であることがわかっている a の元のうち、P を満たすようなもの全体からなる集合、というものを考えていることがわかります。そこで、分出公理:
思うに、分出公理とか置換公理を、あまり強力にして、なんでもできることにすると、
Russellのパラドクスのようなことを生じるおそれがある
だが、分出公理とか置換公理の力を制限すると、
選択公理のように、無限の集合を扱う公理を必要とするということだろうね(^^

195:132人目の素数さん
19/10/06 20:30:12.60 Gc2q5hFd.net
>>182
以上ってまさかこれで>>162の証明の不足部分が補えたという意味?
ではないよね?

196:現代数学の系譜 雑談
19/10/06 20:32:21.54 d8OQiN+r.net
>>172
>>ええ、上記いずれの場合も、第1項 a1=ω はありますよ
>私が聞いてるのは第2項ですw
質問に対して、質問を返して悪いが(^^
1)下記の、順序数の列
 0, 1, 2, 3, . . . , ω を認めますか? Y/N
2)もし、Yesの場合
 0, 1, 2, 3, . . . , ω で、ωの一つ左の順序数は、何ですか? あなた、答えられますか?w
3) もし、Noの場合、現代数学の無限の概念を認めないということですか? Y/N
(参考)
URLリンク(fujidig.github.io)
濃度と順序数 fujidig
June 21, 2016
(抜粋)
P15
順序数というのは自然数が持つ「番号を振る」という目的を無限方向に拡張したものだといえる.
P16
・整列集合 N の型は ω と書かれる.これは最小の無限順序数である.
・順序数を小さい方から順に並べると
0, 1, 2, 3, . . . , ω, ω + 1, ω + 2, ω + 3, . . . , ω2, ω2 + 1, . . . となる
・今並べたのは順序数のうちほんの小さい部分にすぎない.もっと大きい順序数がまだまだある

197:現代数学の系譜 雑談
19/10/06 20:33:41.49 d8OQiN+r.net
>>184
 >>185

198:132人目の素数さん
19/10/06 20:41:51.10 Gc2q5hFd.net
>>186
え?>>185がなんですか?
>>162の証明の不足部分はまだ一つも埋められてませんよ?

199:現代数学の系譜 雑談
19/10/07 06:00:05.83 2lTTrhZd.net
>>187
ええ、どうぞ、>>185にお答え下さい
それに合わせて、>>162の補足説明を、させて頂きます
それまでは、質問者には、常に>>185の逆質問があることを、ご了承ください

200:現代数学の系譜 雑談
19/10/07 06:37:17.06 2lTTrhZd.net
まとめます
1)正則性公理は、無限降下列を禁止するが、その無限降下列の意味は、
 ”無限下降列である x∋x1∋x2∋・・・ ”は
 底抜けの最小元を持たない無限単調減少列の意味です
 ノイマンの自然数構成のような∈関係の無限上昇列を禁止するものではないのです
>>159-160ご参照)
2)空集合から、後者関数を適用し、それに無限公理を適用して、自然数Nを構成する
 このとき、無限公理を適用しただけでは、
 我々の必要とする自然数N(全ての有限nたちのみを含む集合)より大きな集合が出来てしまう
 それを、自然数Nに絞り込む操作を必要とする
 つまり、無限公理により、全ての有限nたちを超える元が出来てしまう
 そのような元たちは、1)で述べたように、正則性公理に反しないのです
>>110-112)
3)ツェルメロ構成では、aの後者関数;suc(a) := {a} なので
 この自然数構成で、全ての有限nたちを超える元が出来てしまう
 そのような元たちを絞って、N={Φ, {Φ}, {{Φ}}, …}と、自然数の集合Nができる
 そこで、全ての有限nたちを超える元たちの中で、最小の元が、ツェルメロ構成でのωに相当します(定義)
>>110>>151
4)ところで、正式な順序数ωの定義は、本来は、下記”整列集合 (A, <) に対して、A を定義域とする関数 G A,<を超限帰納法”による
 ノイマン構成では、この定義がそのまま適用できる
 ツェルメロ構成では、下記”順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できる”ので
 その方法により、ωを定義した上で、3)のツェルメロ構成でのωを再定義すれば良い
QED
(参考)
URLリンク(ja.wikipedia.org)
順序数
(抜粋)
定義



201:整列集合 (A, <) に対して、A を定義域とする関数 G A,<を超限帰納法によって 略 順序数の並び方を次のように図示することができる: 0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............ つづく



202:現代数学の系譜 雑談
19/10/07 06:37:39.24 2lTTrhZd.net
>>189
つづき
注釈
^ 順序数は本来、上で述べた定義とは異なる仕方で定義されていた。
その定義とは、順序集合全体の集まりを「同型である」という "同値関係" によって類別したとき、順序集合 (A, <) の "同値類" を (A, <) の順序型(order type)と呼び、特に整列集合の順序型を順序数と呼ぶというものである。
ところが現代の標準的な集合論においては、A が空集合でない限り (A, <) と同型な順序集合全体の集合といったものは存在しないことが示される。
したがって、このような順序数の定義の仕方は正当な方法であるとは認められない。
これを克服するために考えられたのが上で述べた定義であり、現在は上の定義(あるいはそれと同値な定義)が広く用いられている。
だが、順序型というアイデア自体が排除されたわけではない。順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できるということが知られている。
ただし、整列集合の順序型と順序数は別のものになる。
(引用終り)
以上

203:132人目の素数さん
19/10/07 08:34:01.82 3bkiY8iJ.net
>>189-190
全く証明になってないですね。
結局Ωは何になるんですか?

204:132人目の素数さん
19/10/07 08:54:36.76 3bkiY8iJ.net
もう少し具体的に聞きましょう。
確かに順序数とは整列順序集合の同値類の完全代表系の一つであります。
まず通常のノイマンの構成による順序数全体をOrdとします。
Ordの元xに対しツェルメロ構成によるx番目の順序数をZ(x)としてこれを定めるなら、
Z(0)=0,
Z(x+1)={Z(x)}
としてx<ωまではいいでしょう。
問題はx=ωのとき、すなわちΩ=Z(ω)の定義です。
これはどうするんですか?
これを定めないと超限帰納法は完成しませんよ?

205:現代数学の系譜?雑談
19/10/07 14:21:44.40 ez50Rnmf.net
>191-192
>>189に関連して)
1)ツェルメロ構成での任意aの後者関数;suc(a) := {a}による構成は、正則性公理に反しない
 たとえ、それで無限上昇列が出来ても、ということは認めますか? Y/N
2)ツェルメロ構成での任意aの後者関数;suc(a) := {a}による構成で、
 無限公理を適用して、自然数nをすべて含む無限集合が出来たとき、
 それはいわゆる自然数Nよりも、余計な元、
 即ち、超限順序数に属するべき(有限でない)元が
 生成され、含まれていることに同意しますか? Y/N

206:132人目の素数さん
19/10/07 15:17:51.91 3bkiY8iJ.net
>>193
1) 無限上昇列が正則性公理に反しないでしょ?
そんな事私は主張した事ないですよ?
2) もちろん認めてますよ?というか私自身が可能である事の証明載せましたけど?
それと同じことをツェルメロ構成でも出来る事を示して下さいと言ってるんですけど?

207:現代数学の系譜?雑談
19/10/07 16:08:49.45 ez50Rnmf.net
>>194
(引用開始)
1) 無限上昇列が正則性公理に反しないでしょ?
そんな事私は主張した事ないですよ?
2) もちろん認めてますよ?というか私自身が可能である事の証明載せましたけど?
(引用終り)
なるほど、ID:Gc2q5hFdさんの >>127 のことですかね
ワッチョイがないと、IDは日替わりで、連続性がないので、だれがだれか不明なのですよね
(せめて、コテハンがあれば、分かり易い。コテハンないと、ROMの第三者はなおさら分からないでしょうね)
で、>>127の証明に関して、念押しですけど、
>>193より)
 いわゆる自然数Nよりも、余計な元、
 即ち、超限順序数に属するべき(有限でない)元が
 生成され、含まれていることに同意しますか? Y/N
に対して、Yだと回答されたということですね
では、この超限順序数に属するべき(有限でない)元とは、何なのでしょうか?
ツェルメロ構成でできる集合は、任意aの後者関数;suc(a) := {a}以外は無いですね
そして、有限回任意nの空集合Φに対する後者関数による{}多重の集合 {・・{Φ}・・}(n回{}多重)は、自然数Nに属します
これは、いま議論している、超限順序数に属するべき(有限でない)元では、当然ないですよね
だから、くどいですが、超限順序数に属するべき(有限でない)元、
それは、消去法で、超限回の空集合Φに対する後者関数による超限多重集合 {・・{Φ}・・}(ω+アルファ回{}多重)
でなければならない
それはお認めになるんですよね?
ここ良いですか?
この論点がクリアーできないと、議論が進みませんので

208:132人目の素数さん
19/10/07 18:01:30.93 cEmWDLJd.net
>  いわゆる自然数Nよりも、余計な元、
>、超限順序数に属するべき(有限でない)元が
>  生成され、含まれていることに同意しますか? Y/N
> に対して、Yだと回答されたということですね
いわゆる無限公理によって条件
0∈E、∀x (x∈E⇒x∪{x}∈E)
を満たすEの存在は認めます。
> では、この超限順序数に属するべき(有限でない)元とは、何なのでしょうか?
このってどのですか?
それが分からないので以下はわかりません。
このEからΩを作るんですよね?
なら言葉ではなく例えばノイマンのωのように
ω={x∈E | x:ordered number, x:finite}
のように数式,論理式で示して下さい。
(:ordered number (in the sence of Neumann)と:finiteがどういう論理式で表されるかは>>18で示しています。)
数学である以上、数式で表現できず、その存在が証明できないものの存在なんて認めることはできません。

209:現代数学の系譜 雑談
19/10/07 18:56:54.72 ez50Rnmf.net
>>196
まず、ID:cEmWDLJdさん、レスありがとう
だが、>>194


210:の ID:3bkiY8iJと、ID変わっていますよね まあ、同一人物らしいとは思うけれど、自覚されてますか? さて (引用開始) >  いわゆる自然数Nよりも、余計な元、 >、超限順序数に属するべき(有限でない)元が >  生成され、含まれていることに同意しますか? Y/N > に対して、Yだと回答されたということですね いわゆる無限公理によって条件 0∈E、∀x (x∈E⇒x∪{x}∈E) を満たすEの存在は認めます。 (引用終り) じゃあ、それ、通常の自然数で、N⊂E かつ N≠Eですね つまり、EはNに対して、真に大きい つまり、EはNに対して、余分な元を含む つまり、Nは全ての有限の元を含むので、任意nの空集合Φに対する後者関数による{}多重の集合 {・・{Φ}・・}(n回{}多重)を含むので、それ以外の余分な元を含む それは、消去法で、有限でない元、つまり超限なる(整列したときに超限順序に属する)元ですよね ここで、>>4に書いておいたけど、「議論の前提として、ある程度、標準的に認められている現代数学の成果」、これは認めましょうよ そうしないと、どこかの素人談義と同じになりますぜ それは、時間と余白の無駄ですよ >数学である以上、数式で表現できず、その存在が証明できないものの存在なんて認めることはできません。 それ、どこかで聞いたセリフかもね ツェルメロ以降の現代数学の100年前からの議論を、繰り返したいのですか? 上記に書いたことをお認めになるならば、考えてみますけど でも、上記をお認めになるのが先ですよ、それが前提ですよ



211:第六天魔王
19/10/07 19:03:04.28 rpPbPz0q.net
やれやれ 
「ハゲネズミ」の由来について、HPのリンク張ろうとしたら
NGワードで規制食らってやっと復活したぜw
>>161
>ωから始まる∈無限降下列が存在すると言いたいなら、その列の第2項(ωの次の項)を示して下さい
>>163 馬鹿曰く
>その質問は、哀れな素人さんの無限に関する質問に類似
安達の「最後の自然数は存在しない」という主張のことなら、全く間違ってない
>>164 馬鹿曰く
>ωが、極限順序数で、位相的に集積点(極限点)であり、任意の近傍が S の点を無限に含む
上記の文で何をいいたいのか?
貴様の{・・{Φ}・・}では、どの自然数nも要素にならんから無意味
>>165 馬鹿、恒例のコピペ
(整礎関係 wikipedia)
>ω から始まる長さ有限の降鎖列でいくらでも長いものが取れる。
>なんとなれば、任意の正整数 n に対して
>ω, n - 1, n - 2, ..., 2, 1
>という鎖は長さ n を持つ。
「長さ有限の降鎖列でいくらでも長いものが取れる。」としか書いてないぞ
そこから「長さ無限の降鎖列がとれる」と思うのは正真正銘の馬鹿

212:第六天魔王
19/10/07 19:05:28.52 rpPbPz0q.net
>>185 馬鹿の逆質問
>1)下記の、順序数の列
> 0, 1, 2, 3, . . . , ω を認めますか? Y/N
>2)もし、Yesの場合
> 0, 1, 2, 3, . . . , ω で、ωの一つ左の順序数は、何ですか? あなた、答えられますか?w
>3) もし、Noの場合、現代数学の無限の概念を認めないということですか? Y/N
1)認める
2)存在しない
3)ωの存在を認める
云っとくが
0, 1, 2, 3, . . . , ω は、ただ要素を順番に並べただけ
降鎖列は要素間に必ず∋が入ってる
したがって「ω∋」と書いたら
その右には必ずある要素を書く必要がある
無限公理のωや
ツェルメロの自然数全体の集合ω’={Φ, {Φ}, {{Φ}}, …}
なら、任意の自然数を要素に持つ
(それぞれ自然数を表す集合は異なるが)
しかし、馬鹿が主張している
Ω={・・{Φ}・・}
では、どの自然数も要素にならん
したがって、まず
ω∋n - 1∋n - 2, ..., 2∋1
は構成できない
また、もし
Ω∋Ω’∋Ω’’・・・
と要素がとれたとしても
いつまでたっても自然数nには
たどり着かんから底抜けw
逆に有限回で自然数にたどり着いたら
Ωは自然数だということになるw
相変わらず底抜けの馬鹿っぷりだなwwwwwww

213:第六天魔王
19/10/07 19:06:50.64 rpPbPz0q.net
>>192
>Ordの元xに対し
>ツェルメロ構成によるx番目の順序数をZ(x)として
>これを定めるなら、
>Z(0)=0,
>Z(x+1)={Z(x)}
>としてx<ωまではいいでしょう。
>問題はx=ωのとき、すなわちΩ=Z(ω)の定義です。
>これはどうするんですか?
いい質問だ
ここで、賢いヤツなら
Z(ω)=∪(ω>n)Z(n)
とせざるを得ず、したがって(0={}として)
Z(ω)={{},{{}},{{{}}},…}
とならざるを得ないと観念する
決して{…{}…}なんて形にはならない
しかし馬鹿はここで質問に答えない
だから自分の誤りに気づけない
「縁なき衆生は度し難し」

214:第六天魔王
19/10/07 19:12:33.19 rpPbPz0q.net
>>193
>1)ツェルメロ構成での任意aの後者関数;
> suc(a) := {a}による構成は、正則性公理に反しない
> たとえ、それで無限上昇列が出来ても、ということは認めますか? Y/N
Y
>2)ツェルメロ構成での任意aの後者関数;suc(a) := {a}による構成で、
> 無限公理を適用して、自然数nをすべて含む無限集合が出来たとき、
> そ�


215:黷ヘいわゆる自然数Nよりも、余計な元、 > 即ち、超限順序数に属するべき(有限でない)元が > 生成され、含まれていることに同意しますか? Y/N Y >>195 >では、この超限順序数に属するべき(有限でない)元とは、何なのでしょうか? 馬鹿が考えるような{…{}…}ではないけどな >ツェルメロ構成でできる集合は、任意aの後者関数;suc(a) := {a}以外は無いですね 相変わらず底抜けの馬鹿だな、貴様はwwwwwww {}∈X∧(∀x∈X⇒{x}∈X)  (Xは空集合を要素とし、xがXの要素なら{x}もXの要素である) という条件を満たすXについて 「yがXの要素なら、yは空集合か  y={x}で、Xの要素となるxが存在する」 ∀y.((y∈X⇒y={}∨∃x.({x}=y∧x∈X))  とか思ってるだろ?w そこが馬鹿だというんだよwww 実際には 「Xの空集合でないyで、  Xのいかなる要素xについても  {x}=yとならないものが存在する」 ∃y.(y∈X∧¬(y={})∧∀x.(x∈X⇒¬({x}=y)) が成立しても矛盾はない つまり >超限順序数に属するべき(有限でない)元、それは、消去法で、 >超限回の空集合Φに対する後者関数による超限多重集合 {・・{Φ}・・}(ω+アルファ回{}多重) >でなければならない なんてことはいえない 「縁なき衆生は度し難し」 >それはお認めになるんですよね? 認めねぇよ この大馬鹿者めwwwwwww



216:第六天魔王
19/10/07 19:21:42.49 rpPbPz0q.net
>>201でいってるのは、
{}∈X∧(∀x∈X⇒{x}∈X) 
を満たす集合が、
空集合でも単一要素の集合でもない集合を
要素としても全然問題ない、ということ
例えばa={{{}},{{{}}}}を要素としてもいい
但し、もしaを要素とするなら{a}も{{a}}も要素とせねばならない
そういうこと
では、もし
{}∈X∧(∀x∈X⇒{x}∈X) かつ
∀y.((y∈X⇒y={}∨∃x.({x}=y∧x∈X))
だったら、Xは、馬鹿のいう
{・・{Φ}・・} (無限重)
を要素にもつのか?
しかし、正則性公理の元ではそれはありそうもない

217:第六天魔王
19/10/07 19:35:17.30 rpPbPz0q.net
さて、今日の一曲は・・・これだ!
URLリンク(www.youtube.com)
Emperor 最高だぜ!

218:第六天魔王
19/10/07 19:49:46.87 rpPbPz0q.net
そして、これも名曲
URLリンク(www.youtube.com)

219:132人目の素数さん
19/10/07 22:31:57.78 cEmWDLJd.net
>>197
> それ、どこかで聞いたセリフかもね
> ツェルメロ以降の現代数学の100年前からの議論を、繰り返したいのですか?
そんな事はありません。
証明の全てを書く必要はありません。
そんな論文はなかなかありません。
たの論文なり教科書に載ってる結果を引用したいのなら構いません。
ただしその場合には数学の引用のルールに従って下さい。
引用する結果は
仮定 xがP(x)という条件が満たしているときQ(x)という条件がせいりつする。
の形の命題がxxxという論文、教科書等(この際websiteでもよし)で確認されている事が客観的に確認できる状況において
この命題をx=aについてapplyすればP(a)が確かに確認できるのでQ(a)を使う。
という形までしか許されません。私の>>18を見て下さい。
全部が全部証明はしてないでしょ?

220:現代数学の系譜 雑談
19/10/08 00:10:14.67 3SQHWkr4.net
>>205
>という形までしか許されません。私の>>18を見て下さい。
ああ、>>18をアップした人だったのかい?(^^
>たの論文なり教科書に載ってる結果を引用したいのなら構いません。
まあ、探してみるけどね
おれさ、おっちゃんみたいに、こんなバカ数学板に、ぐだぐだ記号で証明書く趣味ないんだよね
そもそもがさ、書かれた証明が初出なら、タイポとかありうるでしょ
で、真剣に読んだら、あっちにタイポ、こっちにタイポじゃ、赤ペン先生の添削やっているのと変わらんでしょ
まあ、自分が書いたら、もっと非道いだろうけどね(^^;
えーと、それで>>197に書いたけど
(引用開始)
じゃあ、それ、通常の自然数で、N⊂E かつ N≠Eですね
つまり、EはNに対して、真に大きい
つまり、EはNに対して、余分な元を含む
つまり、Nは全ての有限の元を含むので、任意nの空集合Φに対する後者関数による{}多重の集合 {・・{Φ}・・}(n回{}多重)を含むので、それ以外の余分な元を含む
それは、消去法で、有限でない元、つまり超限なる(整列したときに超限順序に属する)元ですよね
(引用終り)
これは、認めるんだね
念を押しておくよ
「EはNに対して、余分な元を含む」
「Nは全ての有限の元を含むので、任意nの空集合Φに対する後者関数による{}多重の集合 {・・{Φ}・・}(n回{}多重)を含むので、それ以外の余分な元を含む」
「それは、消去法で、有限でない元、つまり超限なる(整列したときに超限順序に属する)元です」
ってことな


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch