19/12/01 14:40:06 id6ENHqe.net
>>563 補足
>下記順序数”0, 1, 2, 3, ............, ω, S(ω)(=ω+1)”を数直線に埋め込んでみよう
順序数”0, 1, 2, 3, ............, ω, S(ω)(=ω+1)”に対応する点列を数直線上に構成した
0,1/2,2/3,3/4,・・,1(←ω),1+1/2(←ω+1)
さて、これらの点列に合わせて、縦棒|を配置する
|,|,|,|,・・,|,|
上記を左右反転する
|,|,・・,|,|,|,|
間にΦを挟むと
|,|,・・,|,|,|,|Φ|,|,|,|,・・,|,|
左の|を{ に、右の|を} に 取り替える
{,{,・・,{,{,{,{Φ},},},},・・,},}
あーら不思議、可算無限ω+1重シングルトンのできあがり
中央のΦを抜けば、
{,{,・・,{,{,{,{ },},},},・・,},}
これぞ、天才Zermeloの考えた自然数構成(及び順序数ω)のシングルトン(>>549)なり~!w(^^
正則性公理に反するだぁ~?
そういうやつは、あまた腐っているよw
天才Zermeloをなめているのか?w(^^;
天才Zermeloがそんな間違いするわけない
626:132人目の素数さん
19/12/01 14:56:06.92 M/Nwc0Bq.net
バカ丸出し
627:132人目の素数さん
19/12/01 15:03:05.76 go6lPTYO.net
>>568
こいつ・・・正真正銘の馬鹿だなw
馬鹿の構成した「馬鹿シングルトン」
{,{,・・,{,{,{,{ },},},},・・,},}
の要素は
{,・・,{,{,{,{ },},},},・・,}
でそのまた要素は
・・,{,{,{,{ },},},},・・
で、
ここで馬鹿は詰むw
ここで馬鹿は死ぬw
もう、要素が取れない
正則性公理とかいう以前に、そもそも集合じゃないw
最初っから、馬鹿のやり方で
「順序数”0, 1, 2, 3, ............, ω”に対応する点列を
数直線上に構成する
0,1/2,2/3,3/4,…」
とすれば、外側に{}がない
「似非シングルトン」ができて
馬鹿は速攻引火して灰も残さず丸焼け
だからそんな非数学的な
三歳児のお絵かきじゃダメだって
何べんやったって死ぬって
何べん死んだら気が済むんだってw
628:132人目の素数さん
19/12/01 15:06:28.51 go6lPTYO.net
そもそもツェルメロは自分のやり方による
最初の超限順序数がシングルトンになるなんて
一言もいってない
馬鹿が勝手に妄想しただけw
むしろフォンノイマンのときと同じやり方で極限とったら
{{},{{}},{{{}}},…}
となるから、シングルトンになりようがないw
なんで馬鹿は定義確認せずに自分勝手にウソ定義デッチあげるの?
自分が数学の主だとか自惚れてるわけ?そんなわけないだろw
629:132人目の素数さん
19/12/01 15:13:55.01 go6lPTYO.net
630:>天才Zermeloをなめているのか? >天才Zermeloがそんな間違いするわけない ”天才”Zermeloは、ゲーデルの不完全性定理を理解できなかった 不完全性定理は、ラッセルの逆理と同様のパラドックスだと誤解していた おそらく、証明可能性と真理性を混同していたのだろう …ということで、どんな有名な数学者も、間違うことはあります しかも、「今時学生でもこんな間違いしないだろ」というところで 間違いつづけたままくたばることも間々あります 最近だと、アティヤ氏のリーマン予想解決か 多分、老人性の●●症によるものでしょう 数学者も年齢には勝てません
631:132人目の素数さん
19/12/02 12:20:27.47 /HOpH6/I.net
いや、この問題でZermeloは間違ってない。
スレ主が曲解してるだけ。
632:現代数学の系譜 雑談
19/12/03 00:04:55.04 BRqy0upZ.net
>>568 補足
URLリンク(ja.wikipedia.org)
自然数
より
Zermelo 構成(0 := {}, suc(a) := {a} と定義)
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
4 := {3} = {{{{{}}}}}
・
・
n := {n-1} = {・・{{}}・・}(0 := {}の外がn重)
・
ω := {・・・{{}}・・・} (0 := {}の外がω重)
一方、ノイマン 構成(0 := {}, suc(a) := a∪{a} と定義)
0 := {}
1 := suc(0) = {0} = {{}}
2 := suc(1) = {0, 1} = {0, {0}} = {{}, {{}}}
3 := suc(2) = {0, 1, 2} = {0, {0}, {0, {0}}} = {{}, {{}}, {{}, {{}}}}
4 := suc(3) = {0, 1, 2, 3} = {0, {0}, {0, {0}},{0, {0}, {0, {0}}}} = {{}, {{}}, {{}, {{}}},{{}, {{}}, {{}, {{}}}}}
・
・
n := suc(n-1) = {0, 1, 2, 3,・・,n-1} = {{}, {{}}, {{}, {{}}},・・,{{}, {{}},・・, {{}}・・}}
・
・
ω := {0, 1, 2, 3,・・,n・・・} = {{}, {{}}, {{}, {{}}},・・・,{{}, {{}},・・・, {{}}・・・}}
さてここで
ノイマン 構成から、一番右の要素のみを残して、他の元を抜くと、Zermelo 構成になる
2 := suc(1) = {0, 1} = {0, {0}} = {{}, {{}}}
↓(0,を抜く)
2 := {{{}}} (Zermelo 構成)
3 := suc(2) = {0, 1, 2} = {0, {0}, {0, {0}}} = {{}, {{}}, {{}, {{}}}}
↓(0, 1,を抜く)
3 := {{{{}}}} (Zermelo 構成)
4 := suc(3) = {0, 1, 2, 3} = {0, {0}, {0, {0}},{0, {0}, {0, {0}}}} = {{}, {{}}, {{}, {{}}},{{}, {{}}, {{}, {{}}}}}
↓(0, 1, 2, 3,を抜く)
4 := {{{{{}}}}} (Zermelo 構成)
・
・
n := suc(n-1) = {0, 1, 2, 3,・・,n-1} = {{}, {{}}, {{}, {{}}},・・,{{}, {{}},・・, {{}・・}
↓(0, 1, 2, 3,・・, n-1,を抜く)
n := {・・{{}}・・} (Zermelo 構成)
・
・
ω := {0, 1, 2, 3,・・,n・・・} = {{}, {{}}, {{}, {{}}},・・・,{{}, {{}},・・・, {{}}・・・}}
↓(0, 1, 2, 3,・・, n,・・を抜く)
ω := {・・・{{}}・・・} (0 := {}の外がω重)(Zermelo 構成)
つづく
633:現代数学の系譜 雑談
19/12/03 00:09:38.61 BRqy0upZ.net
>>574
つづき
ノイマン 構成から、Zermelo 構成を抽出する集合の操作は
分出公理を使えば可
URLリンク(ja.wikipedia.org)
公理的集合論
(抜粋)
分出公理
置換公理はフレンケルによって次の分出公理の代わりにおかれたものである(1922年)。分出公理は上に述べた ZF の公理から示すことができる。
この公理は、論理式 ψ をパラメータとする公理図式である。
論理式 ψ を決めたとき、X に対して分出公理が存在を主張する集合はただ一つであることが外延性の公理から言えるので、これを {\displaystyle \{x\in X\mid \psi (x)\}}\{x\in X\mid \psi(x)\} で表す。
{\displaystyle \{x\in X\mid x\in Y\}}\{x\in X\mid x\in Y\} を {\displaystyle X\cap Y}X\cap Y で表す。
634:現代数学の系譜 雑談
19/12/03 00:15:26.23 BRqy0upZ.net
>>575 補足
なお、順序数ωの数直線におけるモデルは、
>>563で示した。なお>>568もご参照
以上
正則性公理?
Zermelo 構成がだめだと?w
だったら、ノイマン 構成もダメになるぞ
それは矛盾であるww(^^;
635:132人目の素数さん
19/12/03 00:30:12 y1kRHc8p.net
バカ丸出し
636:132人目の素数さん
19/12/03 06:15:31.82 2OK0+uPO.net
>>573
確かに
ω := {・・・{{}}・・・} (0 := {}の外がω重)
なんて馬鹿いってるのは◆e.a0E5TtKEであって
Zermeloではない
637:132人目の素数さん
19/12/03 06:20:07.17 2OK0+uPO.net
◆e.a0E5TtKEが
「{}∈{{}},{{}}∈{{{}}} だから {}∈{{{}}}」
につづく馬鹿発言をやらかしたw
>>574
>ノイマン 構成から、一番右の要素のみを残して、
>他の元を抜くと、Zermelo 構成になる
ギャハハハハハハ ハハハハハハハ!!!
「ωには一番右の要素がある」と?
馬鹿か?●違いか?w
大体 ω=x∪{x}となるようなxがあると思ってるのか?馬鹿めw
ω=∪x (有限のxの合併)
だぞw
638:132人目の素数さん
19/12/03 06:22:00.19 2OK0+uPO.net
>>575
>ノイマン 構成から、Zermelo 構成を抽出する
>
639:集合の操作は分出公理を使えば可 じゃ、やってみせてくれ ありもしない「ωの一番右側の元」から ◆e.a0E5TtKEのいうZermelo構成の ウソΩとやらをどうやってデッチあげるのかね(嘲)
640:132人目の素数さん
19/12/03 06:25:50.83 2OK0+uPO.net
>>576
>Zermelo 構成がだめだと?w
こいつ 頭悪いな
貴様のいうZermelo構成のΩ
{・・・{{}}・・・} (0 := {}の外がω重)
は誤りだといっている。
正しいZermelo構成のΩは以下
{{},{{}},{{{}}},…}
>だったら、ノイマン 構成もダメになるぞ
>それは矛盾である
貴様の構成が、極限の手続きに沿わないウソ構成だから矛盾する
正しい極限の手続き(有限の順序数の合併)に沿えば、正しい答えが出る
641:132人目の素数さん
19/12/03 06:28:18.84 2OK0+uPO.net
>>577
◆e.a0E5TtKEのおバカ発言www
1.{}∈{{}},{{}}∈{{{}}} だから {}∈{{{}}}
2.ωには一番右の要素がある
もう一つ馬鹿発言やらかせば、スリーアウト
トンデモ殿堂入りwww
642:132人目の素数さん
19/12/03 18:31:19.35 y1kRHc8p.net
>>574
>ノイマン 構成から、一番右の要素のみを残して、
>他の元を抜くと、Zermelo 構成になる
これって時枝問題で無限列に最後の項があるって言ってたのと同じ間違いだね。
有限と無限の違いが決定的に分かってない。
643:132人目の素数さん
19/12/03 19:16:03.40 2OK0+uPO.net
>>583
安達「自然数の全体には最後の数がないから集合にならない」
正常な人「最後の数がなくても集合になる」
◆e.a0E5TtKE「いや、最後の自然数はある!だ・か・ら集合になる!」
実は安達と◆e.a0E5TtKEは同じ誤りを犯す馬鹿wwwwwww
644:現代数学の系譜 雑談
19/12/03 21:00:03.01 BRqy0upZ.net
>>583-584
おいおい
おまいら、まだ時枝記事不成立が分かっていないのかい?w(^^
やれやれだなww(^^;
645:132人目の素数さん
19/12/03 21:10:06.59 y1kRHc8p.net
と、∞∈N の妄想が止まらないキチガイが申しております
646:132人目の素数さん
19/12/04 00:02:49 Gpiz7JDy.net
時枝記事?
あれは大学2年レベルの学力があれば理解できる。
アホ主くんは選択公理も同値類も、いやその前に自然数から分かってない。だから理解できない。
それだけのこと。
647:132人目の素数さん
19/12/04 06:48:56.18 2LqSA9Bj.net
>>585
●●記事とは無関係に、◆e.a0E5TtKEは∞を誤解してる
「ωには一番右の要素がある」と言い切った瞬間
◆e.a0E5TtKEは最低最悪のトンデモに成り下がったwww
648:現代数学の系譜 雑談
19/12/04 07:20:44.65 f2GnDeIi.net
>>587-588
時枝記事は、大学4年くらいの確率過程論を学べば、不成立はすぐ分かる
時枝記事の後半にある通り、確率変数の族で、独立な可算無限族を考えれば、時枝記事の解法は独立の定義に反するから
それは、大学2年レベルの学力では、分からない人もいるかも知れないねw(^^;
649:132人目の素数さん
19/12/04 07:23:17.29 2LqSA9Bj.net
>>589
貴様には●●記事は無理w
ωに最大元があると思ってる時点でアウトだからwwwwwww
こんな馬鹿に支持されるMも災難だなwwwwwww
650:現代数学の系譜 雑談
19/12/04 09:45:00.48 vhgyVZ6r.net
今月の数学セミナー記事で
”∞圏/圏論を超えて”というのがあるけど
おまいらの∞の理解じゃ、題名からして理解できないだろうな
おサル
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79
スレリンク(math板:281番)-
281 名前:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [] 投稿日:2019/12/04(水) 09:41:38.82 ID:vhgyVZ6r
メモ
URLリンク(www.nippyo.co.jp)
日本評論社
数学セミナー 2019年12月号
(抜粋)
特集= 私が惹かれるこの概念
*∞圏/圏論を超えて……阿部知行 43
651:現代数学の系譜 雑談
19/12/04 14:04:09.76 vhgyVZ6r.net
>>574 補足
1.言っていることは簡単なことで
各nについて、Zermelo 構成とノイマン 構成は、一対
652:一に対応する 2.のみならず、お互いに変換できる ノイマン 構成から、不要な要素を抜けば、Zermelo 構成になり Zermelo 構成から、要素を追加していけば、ノイマン 構成になる 3.例えば、 3 := suc(2) = {0, 1, 2} = {0, {0}, {0, {0}}} = {{}, {{}}, {{}, {{}}}}(ノイマン 構成) ↓(0:= {}と,を抜く) 3 := {{{{}}}} (Zermelo 構成) 逆に、 3 := {{{{}}}} (Zermelo 構成) ↓(0:= {}と,を入れいく) 3 := suc(2) = {0, 1, 2} = {0, {0}, {0, {0}}} = {{}, {{}}, {{}, {{}}}}(ノイマン 構成) とできる。 4.あと∞をどう自分なりに納得するのかは、各人の辿ってきた数学の履歴と実力に任せるが(おっと、おサルは除く。おサルは無理) ∞を極限から理解するなり、リーマン球面の無限遠点と考えるなり、拡張実数と考えるなり、どれでも良いだろう 要するに、現代数学においては、”∞∈N ”という些末なレベルで留まっているおサルは、落ちこぼれってことさ 21世紀の数学は、はるか先にあるんだ(例えば>>591) もっと先へ進めば、これが理解できる(^^
653:現代数学の系譜 雑談
19/12/04 14:06:13.92 vhgyVZ6r.net
>>592 補足
要するに、Zermelo 構成とノイマン 構成は、一対一に対応するので
Zermelo 構成が、正則性公理で否定されるとすれば、ノイマン 構成も否定される
それは、矛盾であるw(^^;
QED
654:132人目の素数さん
19/12/04 14:06:39.75 Tpzu+ASU.net
そもそも超限帰納法理解できてない。
655:現代数学の系譜 雑談
19/12/04 14:07:48.48 vhgyVZ6r.net
だから?
論点ずらしでしょw(^^
656:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/12/04 14:19:31 vhgyVZ6r.net
超限帰納法なんて難しい話はしていない
可算無限の箱の列が存在する(例えば、数学的には形式的冪級数の係数とか、x^nの∞の項とかね。これは否定できないだろ。(時枝の記事の箱もそうだが))
で、箱の列があるなら、可算無限の棒|の列もあるだろう
棒|の列があるなら、カッコ”}”の可算無限の列もあるだろう。例えば、}}・・・}
カッコ”{”の可算無限の列もあるだろう。上記の列を左右反転して、例えば、{・・・{{ とする
これらを左右に配置すれば
{・・・{{ Φ }}・・・}
が構成できる
Zermelo 構成なんて、単純な話だよ
超限帰納法なんて難しい話ではない
657:現代数学の系譜 雑談
19/12/04 14:22:08.34 vhgyVZ6r.net
>>596 補足
x^nの∞の項とかね
↓
x^n・・・の項の可算無限列とかね
にしておこうか
どちらでも、数学的には大差ないが
揚げ足を取られそうだからね(^^;
658:現代数学の系譜 雑談
19/12/04 14:24:43.15 vhgyVZ6r.net
>>596 補足
{・・・{{ Φ }}・・・}
も
揚げ足取りされそうだな
分かり易く書いているだけのこと
と、補足しておく
両端のカッコがあるのないのと、おサルが騒ぎそうだなw(^^;
659:132人目の素数さん
19/12/04 14:29:05.77 TYKCHEeI.net
違う。
そもそも超限帰納法が理解できていない。
というより帰納的順序集合が理解できていない。
660:132人目の素数さん
19/12/04 19:24:50.22 2LqSA9Bj.net
>>596
馬鹿丸出しwww
>>598
揚げ足取りと思うのが馬鹿
例えば
左のカッコを
-1,-1/2,-1/3,-1/4,…
右のカッコを
…,1/4,1/3,1/2,1
とすれば、いくら外のカッコを外しても
空集合にならず正則性公理に反する
◆e.a0E5TtKE 爆死wwwwwww
また
左のカッコを
…,-3/4,-2/3,-1/2
右のカッコを
1/2,2/3,3/4,…
とすれば、一番外側のカッコが存在せず集合にならない
◆e.a0E5TtKE 焼死wwwwwww
661:132人目の素数さん
19/12/04 19:31:26.21 2LqSA9Bj.net
>>592
>ノイマン 構成から、不要な要素を抜けば、Zermelo 構成になり
>Zermelo 構成から、要素を追加していけば、ノイマン 構成になる
そのやり方が成功するのは自然数の場合だけw
>あと∞をどう自分なりに納得するのかは、
>各人の辿ってきた数学の履歴と実力に任せるが
◆e.a0E5TtKEは大学一年の四月で落ちこぼれた後の履歴がゼロwww
したがって実力も完全にゼロwwwwwww
ノイマンのωの場合、各要素に対して不要な要素を抜く
逆にツェルメロのΩの場合、各要素に対して要素を追加する
「ツェルメロ構成は必ずシングルトンになる!」
と思ってるのは大学1年の4月で落ちこぼれて
数学の水深5cmの沼で溺死したwwwwwww
数痴の◆e.a0E5TtKEだけ
爺婆がオレオレ詐欺にひっかかるように
馬鹿◆e.a0E5TtKEもIUTにひっかかる(嘲)
662:132人目の素数さん
19/12/04 23:23:30.02 Gpiz7JDy.net
バカは自分の間違いを認められない
だから自分への批判はすべて揚げ足取りであると妄想してしまう
663:現代数学の系譜 雑談
19/12/05 16:40:22.45 O0aFD/lt.net
>>599
>そもそも超限帰納法が理解できていない。
>というより帰納的順序集合が理解できていない。
超限帰納法は、論点ずらしでしょ
1)おれが言っているのは、Zermelo 構成は、現代数学の自然数のもう一つの(ノイマン構成以外の)構成として認められている(過去レスみてね)
2)自然数のZermelo 構成とノイマン構成とは、二階述語論理で同型だといわれる(過去レスみてね)
3)だったら、ノイマン構成について言えることはZermelo 構成にも言えるし、Zermelo 構成について言えることはノイマン構成にも言える
4)なので、ノイマン構成で順序数ωに相当する集合が構成できるとすれば、Zermelo 構成でもωに相当する集合が構成できるってこと
言っていることはこれだけのこと
”超限帰納法”うんぬんは論点ずらしでしょ
664:現代数学の系譜 雑談
19/12/05 16:48:55.02 O0aFD/lt.net
>>603 補足
Zermelo 構成であれノイマン構成であれ
自然数の形式的な定義ができれば
あとは加法と乗法の演算だが、
そのやり方は下記にある
URLリンク(ja.wikipedia.org)
自然数
(抜粋)
3 形式的な定義
3.1 自然数の公理
3.2 加法と乗法
3.3 順序
3.4 除法
665:現代数学の系譜 雑談
19/12/05 17:16:34.60 O0aFD/lt.net
>>599
>そもそも超限帰納法が理解できていない。
>というより帰納的順序集合が理解できていない。
<補足>
・まあ、要するに、ZFC下で、空集合から始まって、後者関数を定義することで、順次集合を増やしていく
・一方で、無限公理で、全ての後者を含む集合が存在することを認める
・無限公理で認める無限集合は、自然数の集合Nを含むが、Nよりも大きな集合を許容する
・数学の要請として、ちょうどNの集合がほしい。そこで、できる無限集合の最小のものをNとする(共通部分を取るんだったね)
・ここまでは、後者関数にある程度の自由度があって、二階述語論理で同型になるそうだ(過去レスにある)
・もちろん、ノイマン構成が綺麗なので、好まれてデファクトスタンダードになっている
・だが、Zermelo 構成でも、数学的に同じことができる
・自然数の集合Nが構成されれば、そこから有理数Q、代数的数Q_A(可算集合らしい)、実数R、複素数Z、・・と順次構成可能
・一方で、カントールの唱えた順序数ωも同様に構成可能だ
・それは、Zermelo 構成に同じ
それだけのことでしょ
666:132人目の素数さん
19/12/05 17:33:12.88 XmEcuPHB.net
もちろんZermelo構成でも同じことができるしZermeloはやった。
普通に数学科の学部生レベルの知識があれば簡単に理解できる。
整列順序集合とはなにか、超限帰納法とはどのように行うのかがわかってればすぐわかる話。
667:132人目の素数さん
19/12/05 19:34:38.52 vEgJBXXW.net
>>603
>超限帰納法は、論点ずらしでしょ
根本ですが
任意の順序数について無限降下列が存在しないから、超限帰納法が成立する
URLリンク(ja.wikipedia.org)
>>605
>二階述語論理で同型
全然無関係
そもそも最初の超限順序数のZermelo構成の仕方が間違ってる
Zermelo構成でも最初の超限順序数は、シングルトンにはなりません
668:現代数学の系譜 雑談
19/12/06 00:18:11.68 eTcHIROk.net
>>607
1.ノイマン構成で、ノイマン構成の後者関数で、空集合から後者を順に作って行く
そうして、無限公理により、全ての後者を含む無限集合の存在を認める
この無限集合は、自然数Nより過剰の要素を含んでいるので、余分な後者、それは自然数の構成に必要な要素(=有限な要素)以外の要素を除きます
従って、余分な後者とは、有限ではない要素ですよね
2.同じ事を、Zermelo 構成の後者関数で行う。空集合から後者を順に作って行く
そうして、無限公理により、全ての後者を含む無限集合の存在を認める
この無限集合は、自然数Nより過剰の要素を含んでいるので、余分な後者、それは自然数の構成に必要な要素(=有限な要素)以外の要素を除きます
従って、余分な後者とは、有限ではない要素ですよね
3.で、Zermelo 構成の後者とは、つぎつぎと作られるシングルトンなんですよ。それ以外にはありえない
だから、Zermelo 構成で、全ての後者を含む無限集合に、自然数の構成には不要な要素があり、その中にはωに相当する要素があります
それは、シングルトンであり、かつ自然数Nの外の要素です(それは、当然有限ではない)
それだけのことです
669:132人目の素数さん
19/12/06 00:26:52.06 msoFieoC.net
後者関数だけで超限帰納法ができると思ってる時点で全く超限帰納法が理解できていないとわかる。
もちろん理解するつもりが最初からサラサラないようなのでいいんだろうけど。
670:132人目の素数さん
19/12/06 06:57:05.58 a5FaM1Ty.net
>>608
>Zermelo 構成の後者とは、つぎつぎと作られるシングルトンなんですよ。
>それ以外にはありえない
それが誤り
>Zermelo 構成で、全ての後者を含む無限集合に、
>ωに相当する要素があります
>それは、シングルトンであり、かつ自然数Nの外の要素です
それが誤り
ωに相当する要素はない
Zermelo構成による最初の超限順序数は
全ての有限シングルトンのみを要素とする集合
であり、シングルトンではない
「有限順序数がシングルトンだから
最初の超限順序数もシングルトンだ」
というのは
「任意の自然数nについて(1+1/n)^nが有理数だから
lim(n→∞)(1+1/n)^nも有理数だ」
というのと同じくらい誤った主張です
671:132人目の素数さん
19/12/06 07:35:12.33 a5FaM1Ty.net
>>610
>Zermelo 構成の後者とは、つぎつぎと作られるシングルトンなんですよ。
>それ以外にはありえない
ここは「後者」についてしかいってないから「誤り」ではないか
「Zermelo 構成の順序数は、極限となるものもシングルトンなんですよ。」
というなら、それは誤り
672:現代数学の系譜 雑談
19/12/06 07:56:31.62 eTcHIROk.net
参考
URLリンク(en.wikipedia.org)
Axiom of infinity
(抜粋)
It was first published by Ernst Zermelo as part of his set theory in 1908.[1]
References
[1] Zermelo: Untersuchungen uber die Grundlagen der Mengenlehre, 1907, in: Mathematische Annalen 65 (1908), 261-281; Axiom des Unendlichen p. 266f.
URLリンク(glossar.hs-augsburg.de)(1908):_Untersuchungen_%C3%BCber_die_Grundlagen_der_Mengenlehre
Datenschutz Uber GlossarWiki Lizenzbestimmungen
(抜粋)
Zermelo, E. (1908): Untersuchungen uber die Grundlagen der Mengenlehre
Zermelo (1908b): Ernst Zermelo; Untersuchungen uber die Grundlagen der Mengenlehre; in: Mathematische Annalen; Band: 65; Nummer: 2; Seite(n): 261?281;
URLリンク(gdz.sub.uni-goettingen.de)
(このサイトからPDFが落とせる)
Untersuchungen uber die Grundlagen der Mengenlehre. I. Von E. ZERMELO in Gottingen. P261
を眺めているが、すぐには正直読めない
集合論の記号もちょっと違うんだ
無限公理がどこに書いてあるのか、それすら分からない
PDFをOCRして、表題だけGoogle翻訳すると
Untersuchungen uber die Grundlagen der Mengenlehre. I.
Von
E. ZERMELO in Gottingen.
↓
Studies on the basics of set theory. I.
From
E. ZERMELO in Gottingen.
OCRは、ある程度読んでくれているのかな?(^^;
少しずつ、Google翻訳に喰わせるか
673:現代数学の系譜 雑談
19/12/06 07:58:52.44 eTcHIROk.net
>>609
超限帰納法は関係ないよ
だって、公理(無限公理で与件)だもの(^^;
674:132人目の素数さん
19/12/06 13:44:42.59 U5iqUuKj.net
>>613
何が関係あって何が関係ないかあなたの現時点での学力でわかるはずありません。
そもそもZermelo順序数が超限帰納法を用いて定義されている事すら理解できるはずありません。
それが何かわかってないんだから。
675:132人目の素数さん
19/12/06 23:10:49.52 AcrqIt0t.net
工業高校卒は数学語らない方がいい
676:132人目の素数さん
19/12/07 01:44:09.61 tI9fXlD+.net
いい、悪い、は何にとってなのかに言及しないと何も意味をなさないと、思うんです
読む方からしたら
工業高校卒は数学語らない方が(便秘対策に)いい
という意味かも知れないなと思ってしまう訳です
677:現代数学の系譜 雑談
19/12/07 08:42:52.69 H2e5WMAT.net
>>614
無理するな(^^
(>>612より)
URLリンク(gdz.sub.uni-goettingen.de)
(このサイトからPDFが落とせる)
Untersuchungen uber die Grundlagen der Mengenlehre. I. Von E. ZERMELO in Gottingen. P261
(抜粋英訳)
P263
Axiom I. If every element of a set M is simultaneously an element of N and vice versa, that is, if
678: M = E N and N = E M at the same time, then M = N is always M or shorter: every set is determined by its elements. P266 But in order to secure the existence of "infinite" sets, we still need the following axiom, which derives from its essential content by Mr. R. Dedekind. Axiom VII. The domain contains at least a set Z which contains the null set as an element and is such that each of its elements a is another element of the form {a}, or which with each of its elements a is also the corresponding set {a } as an element. (Axiom of the infinite.) 14 VII. *) If Z is an arbitrary set of the properties required in VII, then for each of its subsets Z1 it is definite whether it possesses the same property. For if a is any element of Z1 ', it is definite whether {a} ∈ Z1, and all the elements a of Z1 thus constituted form the elements of a subset Z1' for which it is definite whether Z1 '= Z1 or Not. Thus, all subsets Z1 of the considered property form the elements of a subset T = E UZ, and the average corresponding to them (# 9) Z0 = DT is an amount of the same nature. つづく
679:現代数学の系譜 雑談
19/12/07 08:43:56.92 H2e5WMAT.net
>>617
つづき
For once 0 is a common element of all elements Z1 of T, and on the other hand, if a is a common element of all these Z1, then also {a} is common to all and therefore also an element of Z0.
If Z 'is any other quantity of the nature required in the axiom, then in the same way as Z0 it corresponds to Z for a smallest subset Z0' of the property under consideration.
Now, however, the average [Z0, Z0 '], which is a common subset of Z and Z', must have the same properties as Z and Z and, as a subset of Z, the constituent Z0 and, as a subset of Z ', the constituent Z0 ' contain.
After I it follows that [Z0, Z0 '] = Z0 = Z0', and that Z0 is therefore the common component of all possible quantities, such as Z, although these do not need to form the elements of a set.
The set Z0 contains the elements 0, {0}, {{0}}, and so on, and may be called a "series of numbers" because their elements can represent the location of the numerals.
It is the simplest example of a "countless infinite" set (Nos. 36).
注:36節(Nos. 36 P280)で、ZERMELOは無限("unendliche")について論じている。
つづく
680:現代数学の系譜 雑談
19/12/07 08:44:56.93 H2e5WMAT.net
>>618
つづき
(ドイツ語原文)
P263
Axiom I. Ist jedes Element einer Menge M gleichzeitig Element von N und umgekehrt, ist also gleichzeitig M =E N und N =E M, so ist immer M = N. Oder kurzer: jede Menge ist durch ihre Elemente bestimmt.
P266
Um aber die Existenz "unendlicher" Mengen zu sichern, bedurfen wir noch des folgenden, seinem wesentlichen Inhalte von Herrn R. Dedekind**) herruhrenden Axiomes.
Axiom VII. Der Bereich enthalt mindestens eine Menge Z, welche die Nullmenge als Element enthalt und so beschaffen ist, das jedem ihrer Elemente a ein weiteres Element der Form {a} entspricht, oder welche mit jedem ihrer Elemente a auch die entsprechende Menge {a} als Element enthalt.
(Axiom des Unendlichen.)
14 VII. *) Ist Z eine beliebige Menge von der in VII geforderten Beschaffenheit, so ist fur jede ihrer Untermengen Z1 definit, ob sie die gleiche Eigenschaft besitzt. Denn ist a irgend ein Element von Z1' so ist definit, ob auch {a} ε Z1 ist,
und alle so beschaffenen Elemente a von Z1 bilden die Elemente einer Untermenge Z1', fur welche definit ist, ob Z1' = Z1 ist oder nicht. Somit bilden alle Untermengen Z1 von der betrachteten Eigenschaft die Elemente einer Untermenge T =E UZ,
und der ihnen entsprechende Durchschnitt (Nr. 9) Z0 = DT ist eine Menge von der gleichen Beschaffenheit.
つづく
681:現代数学の系譜 雑談
19/12/07 08:45:21.77 H2e5WMAT.net
>>619
つづき
Denn einmal ist 0 gemeinsames Element aller Elemente Z1 von T, und andererseits, wenn a gemeinsames Element aller dieser Z1 ist, so ist auch {a} allen gemeinsam und somit gleichfalls Element von Z0.
Ist nun Z' irgend eine andere Menge von der im Axiom gefordertenN Beschaffenheit, so entspricht ihr in gen au derselben Weise wie Z0 dem Z eine kleinste Untermenge Z0' von der betrachteten Eigenschaft.
Nun mus aber auch der Durchschnitt [Z0, Z0'] , welcher eine gemeinsame Untermenge von Z und Z' ist, die gleiche Beschaffenheit wie Z und Z haben und als Untermenge von Z den Bestandteil Z0, sowie als Untermenge von Z' den Bestandteil Z0' enthalten.
Nach I folgt also, das [Z0, Z0'] = Z0 = Z0' sein mus, und das somit Z0 der gemeinsame Bestandteil aller moglichen wie Z beschaff (men Mengen ist, obwohl diese nicht die Elemente einer Menge zu bilden brauchen.
Die Menge Z0 enthalt die Elemente 0, {0}, { {0} } usw. und moge als "Zahlenreihe" bezeichnet werden, weil ihre Elemente die Stelle der Zahlzeichen vertreten konnen.
Sie bildet das einfachste Beispiel einer "abzahl bar unendlichen" Menge (N r. 36).
(引用終り)
以上
682:現代数学の系譜 雑談
19/12/07 08:49:51.11 H2e5WMAT.net
>>618 補足
(引用開始)
The set Z0 contains the elements 0, {0}, {{0}}, and so on, and may be called a "series of numbers" because their elements can represent the location of the numerals.
It is the simplest example of a "countless infinite" set (Nos. 36).
注:36節(Nos. 36 P280)で、ZERMELOは無限("unendliche")について論じている。
(引用終り)
ってことね
QED ww(^^
なお、英訳は、PDFをアクロバットのドイツ語OCRに掛けて、ドイツ語OCRから、Google翻訳で独→英に訳した。
OCRの誤読は極力手直ししたが、誤訳を含めて、疑問のある方は、原文PDFに当たって下さい(^^;
じゃあな(^^;
683:132人目の素数さん
19/12/07 09:23:17.57 uZFmzNJe.net
>>621
(日本語訳)
「集合Z0には要素0、{0}、{{0}}などが含まれ、
それらの要素が数字の位置を表すことができるため、
「一連の数字」と呼ばれる場合があります。
これは、「無数の無限」集合の最も単純な例です」
ツェルメロ自身
「シングルトンじゃない」
と言い切ってますね
684:132人目の素数さん
19/12/07 09:25:15.54 uZFmzNJe.net
つまりツェルメロのいう集合は
{0,{0},{{0}},…}
ってこと
◆e.a0E5TtKEへ贈る言葉
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::。:::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::::::::::::::::::。::::::...... ... --─- :::::::::::::::::::: ..::::: . ..::::::::
:::::::::::::::::...... ....:::::::゜::::::::::.. (___ )(___ ) ::::。::::::::::::::::: ゜.::::::::::::
:. .:::::。:::........ . .::::::::::::::::: _ i/ = =ヽi :::::::::::::。::::::::::: . . . ..::::
:::: :::::::::.....:☆彡:::: //[|| 」 ||] ::::::::::゜:::::::::: ...:: :::::
:::::::::::::::::: . . . ..: :::: / ヘ | | ____,ヽ | | :::::::::::.... .... .. .::::::::::::::
::::::...゜ . .::::::::: /ヽ ノ ヽ__/ ....... . .::::::::::::........ ..::::
:.... .... .. . く / 三三三∠⌒>:.... .... .. .:.... .... ..
:.... .... ..:.... .... ..... .... .. .:.... .... .. ..... .... .. ..... ............. .. . ........ ......
:.... . ∧∧ ∧∧ ∧∧ ∧∧ .... .... .. .:.... .... ..... .... .. .
... ..:( )ゝ ( )ゝ( )ゝ( )ゝ無茶しやがって… ..........
.... i⌒ / i⌒ / i⌒ / i⌒ / .. ..... ................... .. . ...
.. 三 | 三 | 三 | 三 | ... ............. ........... . .....
... ∪ ∪ ∪ ∪ ∪ ∪ ∪ ∪ ............. ............. .. ........ ...
三三 三三 三三 三三
三三 三三 三三 三三
685:132人目の素数さん
19/12/07 09:29:11.41 uZFmzNJe.net
◆e.a0E5TtKEへ贈る歌
URLリンク(www.youtube.com)
御冥福をお祈りいたします
686:132人目の素数さん
19/12/07 11:25:12.03 LqOT9BiI.net
>>617
無理などあなた以外誰もする必要ないくらいの問題です。
こんな話数学科の学部生レベルのごく基本的なお話です。
ツォルンの補題や超限帰納法なんて一回生でやる話です。
あなたはそのレベルの話ですら理解できてないんですよ。
理解するつもりすらないらしいから当然ですが。
687:現代数学の系譜 雑談
19/12/07 14:50:12.16 H2e5WMAT.net
>>625
無理するな
URLリンク(ja.wikipedia.org)
レーヴェンハイム?スコーレムの定理
(抜粋)
レーヴェンハイム?スコーレムの定理(英: Lowenheim?Skolem theorem)とは、可算な一階の理論が無限モデルを持つとき、全ての無限濃度 κ について大きさ κ のモデルを持つ、という数理論理学の定理である。
そこから、一階の理論はその無限モデルの濃度を制御できない、そして無限モデルを持つ一階の理論は同型の違いを除いてちょうど1つのモデルを持つようなことはない、という結論が得られる。
定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す。
レーヴェンハイム-スコーレムの定理から導かれる結論の多くは、一階とそうでないものの違いがはっきりしていなかった20世紀初頭の論理学者にとっては直観に反していた。
例えば、真の算術 (true arithmetic) には非可算なモデルがあり、それらは一階のペアノ算術を満足するが、同時に帰納的でない部分集合を持つ。さらに悩ましかったのは、集合論の可算なモデルの存在である。
それにもかかわらず、集合論は実数が非可算であるという文を満たさなければならない。この直観に反するような状況はスコーレムのパラドックスと呼ばれ、可算性 (countability) は絶対的 (absolute) ではないことを示している。
つづく
688:現代数学の系譜 雑談
19/12/07 14:51:04.02 H2e5WMAT.net
>>626
つづき
URLリンク(en.wikipedia.org)
Lowenheim?Skolem theorem
(抜粋)
The proof of the upward part of the theorem also shows that a theory with arbitrarily large finite models must have an infinite model; sometimes this is considered to be part of the theorem.
Many consequences of the Lowenheim?Skolem theorem seemed counterintuitive to logicians in the early 20th century, as the distinction between first-order and non-first-order properties was not yet understood.
One such consequence is the existence of uncountable models of true arithmetic, which satisfy every first-order induction axiom but have non-inductive subsets.
Another consequence that was considered particularly troubling is the existence of a countable model of set theory, which nevertheless must satisfy the sentence saying the real numbers are uncountable.
This counterintuitive situation came to be known as Skolem's paradox; it shows that the notion of countability is not absolute.
689:現代数学の系譜 雑談
19/12/07 14:54:57.80 H2e5WMAT.net
>>626-627
(引用開始)
レーヴェンハイム-スコーレムの定理
定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す。
The proof of the upward part of the theorem also shows that a theory with arbitrarily large finite models must have an infinite model; sometimes this is considered to be part of the theorem.
(引用終り)
後者関数の繰り返し適用で、無限集合ができる
それは、ノイマンの後者関数であれ、ZERMELOの後者関数(=多重シングルトン)であれ、同じことだよ
無理するな
690:現代数学の系譜 雑談
19/12/07 15:01:35.88 H2e5WMAT.net
>>622
「集合Z0には要素0、{0}、{{0}}などが含まれ、
それらの要素が数字の位置を表すことができるため、
「一連の数字」と呼ばれる場合があります。
これは、「無数の無限」集合の最も単純な例です」
↓
(>>621より英文)
The set Z0 contains the elements 0, {0}, {{0}}, and so on, and may be called a "series of numbers" because their elements can represent the location of the numerals.
It is the simplest example of a "countless infinite" set (Nos. 36).
(引用終り)
これの意味は
0、{0}、{{0}}、・・・、{・・{0}・・}
691:n重、・・・ ↓↑ 0、 1、 2、・・・、 n、 ・・・ これで無限集合ができるってこと つまり、シングルトンの無限列だよw(^^
692:132人目の素数さん
19/12/07 15:04:02.97 r8l5YtX/.net
>>628
違います。
後者関数だけで超限帰納法ができると言ってるのは整列順序集合がわかってないからです。
もうすでにあなたがコピペした文章の中に整列順序集合は何回も出てきていますがあなたは一つも理解できていません。
理解するつもりなどないから当たり前ですが。
693:132人目の素数さん
19/12/07 15:10:20.63 uZFmzNJe.net
>>629
The set Z0 contains the elements 0, {0}, {{0}}, and so on
「集合 Z0 は要素0,{0},{{0}}…等を含む」
Z0はシングルトンではなく無限集合だと書かれてます
英語を中1レベルから復習することをお勧めします
数学は理解できなくても、英語が理解できれば役に立ちますよ
694:132人目の素数さん
19/12/07 15:13:19.68 xYeMsbxM.net
contains = 含む
の意味が取れてないですね。
695:132人目の素数さん
19/12/07 15:16:46.49 DlHZa83T.net
>>629
0、 1、 2、・・・、 n、 ・・・
という列のどこにもNは現れないんだが?
Nは
0、 1、 2、・・・、 n、 ・・・
を全て要素として持っているのだから
>つまりツェルメロのいう集合は
>{0,{0},{{0}},…}
>ってこと
だろw
バカ過ぎw
696:132人目の素数さん
19/12/07 15:21:11.44 DlHZa83T.net
バカ曰く「0,1,2,…という列はいずれNに達する」
まともな人曰く「Nは自然数ではなく自然数全体の集合です」
697:132人目の素数さん
19/12/07 15:30:12.14 uZFmzNJe.net
>>633
もし◆e.a0E5TtKEがいまだに{}∈{{{}}}だと誤解し続けてるなら
無限重シングルトン…{{}}…が、{},{{}},{{{}}}を要素とする
と誤解している可能性は大いにありますね
698:現代数学の系譜 雑談
19/12/07 15:37:50.36 H2e5WMAT.net
>>622
おサル=ID:uZFmzNJe は、恥かきだなw(^^;
正則性公理のそこでつまずいているのかw
(参考)
Inter-universal geometry と ABC予想 42
スレリンク(math板)
701 名前:132人目の素数さん[] 投稿日:2019/12/07(土) 09:59:15.64 ID:uZFmzNJe [3/3]
>>697
>正則性公理には反してませんよ、ZFCに反してませんよと強調したかった
しかし∈-loopsは、正則性公理とは矛盾しますけどね
「集合のいかなる∈列も有限長で終わる」
というのが正則性公理ですから
(それゆえ「基礎の公理」とも呼ばれる)
URLリンク(ja.wikipedia.org)
整礎関係
(抜粋)
数学において、二項関係が整礎(せいそ、英: well-founded)であるとは、真の無限降下列をもたないことである。
定義
集合あるいはクラス X 上の二項関係 R が整礎であるとは、X の空でない任意の部分集合 S が R に関する極小元を持つことをいう[1]。
X が集合であるとき、従属選択公理(英語版)(これは選択公理よりも真に弱く可算選択公理よりも真に強い)を仮定すれば、同値な定義として、関係が整礎であることを可算無限降下列が存在しないこととして定められる[3]。
集合 x が整礎的集合 (well-founded set) であることは、∈ が x の推移閉包上で整礎関係となることと同値である。ZF における公理のひとつである正則性の公理は、全ての集合が整礎であることを要請するものである。
関係 R が X 上で逆整礎 (converse well-founded) または上方整礎 (upwards well-founded) であるとは、R の逆関係 R?1 が X 上の整礎関係であるときにいう。このとき R は昇鎖条件を満たすという。
例
全順序でない整礎関係の例。
・自然数の順序対全体の集合 N × N 上の、(n1, n2) < (m1, m2) ⇔ n1 < m1 かつ n2 < m2 となる順序。
整礎でない関係の例。
・負整数全体 {?1, ?2, ?3, …} の通常の順序。任意の非有界部分集合が最小元を持たない。
・有理数全体(または実数全体)の標準的な順序(�
699:蜿ャ関係)。たとえば、正の有理数(または正の実数)全体は最小元を持たない。 (引用終り)
700:132人目の素数さん
19/12/07 15:40:01.31 DlHZa83T.net
{N}は無限集合と言い張ってるところを見るとあり得ますね
701:132人目の素数さん
19/12/07 15:45:06.29 xYeMsbxM.net
本人このスレが数学の議論するためのものじゃないっていってるし、
本人自身数学ができるようになることには望んでないらしいからいいけどね。
コピペも今読んで理解するつもりはない 積読倉庫 らしいしな。
多分永遠に読まないだろうけど。
702:現代数学の系譜 雑談
19/12/07 15:45:48.09 H2e5WMAT.net
>>636 補足
”「集合のいかなる∈列も有限長で終わる」
というのが正則性公理ですから”
は間違い
”真の無限降下列をもたない”ってことね
”ZF における公理のひとつである正則性の公理は、全ての集合が整礎であることを要請するものである。”は、説明不足だが、∈による二項関係で、真の”真の無限降下列をもたない”というのが、正則性の公理
詳しくは、下記の渕野 昌先生を見て下さい(^^;
URLリンク(fuchino)(URLがNGなので、キーワードでググれ(^^ )
基礎の公理の成り立たない集合論 (non well-founded set theory) について 渕野 昌(Sakae Fuchino) Last modified: Sat Aug 13
(抜粋)
なぜだかは分らない が,∈-無限下降列に対して病的な興味を示す素人数学者が後をたたないからで ある.
私の知っている例でも,体系の言語で記述される(内的な)無限降下列 とモデルでの無限降下列の区別さえ定かでないような,∈ の整列性を仮定し ない集合論に関するあやしげな博士論文が,集合論以外の専門の数学者による 審査で通ってしまった,という,ある旧帝国大学*2での最近の事例がある.
こ のような不愉快な傾向に拍車をかけるようなまねはくれぐれもやめてほしい, と強く希望する次第である.
基礎の公理 (Axiom of Foundation) は,
(1)
すべての集合 x に対し,x の要素で, ∈ (の transitive closure として得られる(前)順序)に関して極小なものが存在する
ことを主張するものです.この公理により,∈-列のループ(特に長さが 1 のループ x ∈ x)や, ∈ に関する無限下降列 x1 ∋ x2 ∋ x3 ∋ ・・・ が存在しないことなどが帰結されます.
703:132人目の素数さん
19/12/07 15:46:01.53 uZFmzNJe.net
>>636
>数学において、二項関係が整礎(せいそ、英: well-founded)であるとは、
>真の無限降下列をもたないことである。
「真の」は要りません。「無限降下列をもたないこと」で構いません。
704:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/12/07 15:49:49 H2e5WMAT.net
>>629 補足
0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・
この列が、もし有限で終われば、
集合 {0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・}
は、無限集合ではない
この対偶で
集合 {0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・}が無限集合なら
列 0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・ は、有限で終わらない
QED w(^^;
705:132人目の素数さん
19/12/07 15:53:08 uZFmzNJe.net
>>639
>体系の言語で記述される(内的な)無限降下列 と
>モデルでの無限降下列の区別・・・
超準的自然数の話はしてませんので
ここでは上記の文章は無関係です
706:132人目の素数さん
19/12/07 15:56:15 uZFmzNJe.net
>>641
>集合 {0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・}が無限集合なら
>列 0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・ は、有限で終わらない
一行目の
「集合 {0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・}が無限集合なら」
の前提は必要ありません
列 0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・ は、有限で終わらない
それが真実です
「だから、{・・{0}・・}無限重 が存在する!」
と思ってるなら、それは初歩的な誤りですが
707:132人目の素数さん
19/12/07 15:58:02 xYeMsbxM.net
前に集合Xに対し集合Fを
X∈F
Y∈F、Z∈Y⇒Z∈F
を満たす最小のクラスとしたとき、
Fの任意の元がシングルトン⇒Fは有限集合
の証明を書いたんだけど、まるで理解できなかったらしい。
証明書く能力はおろか、人が書いた証明を読む能力がまるでない。
曰く、その能力を身につけるつもりもサラサラないそうな。
数学に興味はあるけど、数学を理解するつもりは全然ないというスタイルらしい。
708:132人目の素数さん
19/12/07 16:00:47.70 uZFmzNJe.net
ツェルメロの無限公理は
「無限集合 {0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・}が存在する」
という主張です
正しくは
「0を要素とし、さらにxが
709:要素ならば、{x}も要素とする集合が存在する」 という主張です 上記の主張を満たす最小の集合が、自然数全体の集合になります その要素はすべて自然数に対応し、その降下列の長さは有限です したがって、正則性公理には反しません
710:132人目の素数さん
19/12/07 16:07:12.36 r8l5YtX/.net
生息性に反しないという事を主張するにはなにをしないといけないのかもわかってない。
711:132人目の素数さん
19/12/07 16:13:06 uZFmzNJe.net
>>644
>X∈F
>Y∈F、Z∈Y⇒Z∈F
>Fの任意の元がシングルトン⇒Fは有限集合
これ、本当ですか?
第一の疑問
「Fの任意の元がシングルトンの場合、
任意のY∈Fについて、Z∈YなるZがとれるので
降下列が終わらないのではないか?」
第二の疑問
「仮にFの任意の元がシングルトンもしくは空集合、とした場合
Fを{{},{{}},{{{}}},…}とすれば、Fは無限集合だが
Y∈F、Z∈Y⇒Z∈Fを満たすのではないか?」
712:132人目の素数さん
19/12/07 16:13:07 DlHZa83T.net
>>639
>”真の無限降下列をもたない”というのが、正則性の公理
バカに質問
真の無限降下列ではない無限降下列の例を示せ
713:132人目の素数さん
19/12/07 16:19:23 r8l5YtX/.net
>>647
正確なステートメントは忘れました。
このスレないの前の方に書いてあります。
極簡単なステートメントで彼の認めたΩの性質を持つものはZFCの公理に反する証明です。
まるで理解できなかったし、理解するつもりもないと断言してました。
714:132人目の素数さん
19/12/07 16:28:57.46 uZFmzNJe.net
>>649
>>28のことなら、>>644とは違いますね
715:132人目の素数さん
19/12/07 16:30:53.44 r8l5YtX/.net
>>28
ではないです。
F(X)と表記した記憶があります。
716:132人目の素数さん
19/12/07 16:36:08.72 uZFmzNJe.net
>>327かな それでも>>644とは違いますね
717:132人目の素数さん
19/12/07 16:38:42.94 r8l5YtX/.net
>>652
それです。
718:132人目の素数さん
19/12/07 16:40:02.61 r8l5YtX/.net
ちなみにスレ主は彼の主張するΩが(3)の仮定を満たす事は認めるそうです。
719:132人目の素数さん
19/12/07 16:42:59.87 uZFmzNJe.net
>>653
そうだとして
>>327
>(1) 集合XにおいてF(X)が
>x∈F(X)⇔∃(x1,‥xn) x=xn, X=x1, x1∋x2∋‥‥∋xn
>を満たすものが構成できる。
>(2) F(X)の任意の元が有限集合⇔rank(X)が有限
>(3) F(X)の任意の元がsingleton⇔XがZermelo natural number
「Fの任意の元がシングルトン⇒Fは有限集合」は(3)とは全然違いますよ
酷過ぎませんか?
720:132人目の素数さん
19/12/07 16:44:43.61 r8l5YtX/.net
>>655
すいません。
混乱させたなら謝ります。
このスレではちゃんとした数学議論するつもりないのでちょっと雑に書いてしまいました。
721:132人目の素数さん
19/12/07 16:52:13.00 uZFmzNJe.net
>>656
あなた、>>327を書いた人とは別人でしょう?
もし当人なら、あんな嘘は書けません
そのくらい酷いです
>このスレではちゃんとした数学議論するつもりない
それは ◆e.a0E5TtKE と同じく
全く考えずに感じたままを書き流す
という意味ですか?
722:132人目の素数さん
19/12/07 16:53:49.16 r8l5YtX/.net
>>657
いや、本人ですよ。
証明する方法はありませんけど。
723:132人目の素数さん
19/12/07 16:54:14.73 uZFmzNJe.net
>>654
この文章も意味不明ですね
もし
>(3) F(X)の任意の元がsingleton⇔XがZermelo natural number
を認めるなら、
「ωにあたるZermeloのordinalはsingletonではない」
ということですからね
724:132人目の素数さん
19/12/07 16:58:58 r8l5YtX/.net
>>659
どういう事でしょう?
>>654(3)の前提条件は無限番目以降のZermelo ordinal numberは満たす事ができません。
ω番目のZermelo ordinal numberをZ(ω)と書くならF(X)にXが入りますが
これはsingletonではありません。
725:132人目の素数さん
19/12/07 16:59:47 uZFmzNJe.net
>>658
別にあなたが成りすましてるといいたいわけではないが
>>644がちょっとあり得ないレベルの粗雑化なので
あれじゃ、書く意味ないですよね
726:132人目の素数さん
19/12/07 17:04:58.24 r8l5YtX/.net
このスレで成り済ましなんてしませんよ。
そもそも>>327は集合論の教科書の最初の50ページ読んでればわかる範囲の話だし。
727:132人目の素数さん
19/12/07 17:06:30.81 uZFmzNJe.net
>>660
> >>654(3)の前提条件は
> 無限番目以降のZermelo ordinal numberは
> 満たす事ができません。
あなたのいう(3)の前提条件とは
「 F(X)の任意の元がsingleton」
のことですね
そういう
728:ときは(3)の前提条件と書かずに はっきり言明として書いてください そうでなければ他人はわかりませんよ
729:132人目の素数さん
19/12/07 17:09:05.76 uZFmzNJe.net
>>662
だったら
「Fの任意の元がシングルトン⇒Fは有限集合」
の誤りも即座に分かるでしょう?
730:132人目の素数さん
19/12/07 17:11:22.97 r8l5YtX/.net
>>663
それです。
Xが>>660のZ(ω)のとき、F(X)は無限集合なので反例にはなりません。
731:132人目の素数さん
19/12/07 17:19:37 uZFmzNJe.net
>>665
>反例にはなりません。
何の?(3)の?その通りですよ
要するに◆e.a0E5TtKEは
「(3)の左辺が成り立つが右辺が成り立たない」
と云ってるといいたいわけでしょう?
732:132人目の素数さん
19/12/07 17:20:44 r8l5YtX/.net
>>664
反例ありますか?
G(X)をF(X)を点とし、Xをルートとして包含関係でむきづけられた有効グラフとして、F(X)が無限集合と仮定する。
さらに(2)の仮定が満たされているとすると各ノードが有限分岐しかなければ選択公理下では無限有向列が取れてしまうので正則性公理に反する。
もちろんF(X)の要素が全てsingletonであるならF(X)は無限集合たり得ないはずなんですけど?
733:132人目の素数さん
19/12/07 17:22:02 r8l5YtX/.net
>>666
いえ、スレ主は(3)の仮定は彼の主張するΩが満たす事は認めています。
734:132人目の素数さん
19/12/07 17:27:31.65 uZFmzNJe.net
>>667
>>644の「Fの任意の元がシングルトン⇒Fは有限集合」の話ですよね?
「Fの任意の元がシングルトン」でY∈F、Z∈Y⇒Z∈Fなんですよね?
で、Fはそもそも正則性公理を満たしますか?
735:132人目の素数さん
19/12/07 17:30:02.27 r8l5YtX/.net
>>669
正則性公理はもちろん満たしていることは大前提でスレ主は正則性公理下でも矛盾しないと主張しています。
正則性公理がなければ矛盾するのかしないのかは知りません。
736:132人目の素数さん
19/12/07 17:30:36.88 uZFmzNJe.net
>>668
何が「いえ」なの?
◆e.a0E5TtKEはΩはシングルトンだが自然数でないといってるんでしょう?
じゃΩは(3)の左側が成立するが、右側が成立しない反例だといってるんでしょう?
737:132人目の素数さん
19/12/07 17:33:20.01 uZFmzNJe.net
>>670
いや、ここでは◆e.a0E5TtKEは関係ないですよ
「Fの任意の元がシングルトン」で
「Y∈F、Z∈Y⇒Z∈F」としたとき
Fは正則性公理を満たしますか?
という問いですよ
強調しておきますが
{}はシングルトンではないですよ
要素ゼロですから
738:132人目の素数さん
19/12/07 17:34:52.20 r8l5YtX/.net
>>671
そうです。
スレ主は彼のΩが(3)のhypothesisは満たす、有限Zermelo numberであると主張しています。
739:132人目の素数さん
19/12/07 17:35:46.28 r8l5YtX/.net
>>672
満たします。
740:132人目の素数さん
19/12/07 17:40:05.64 uZFmzNJe.net
>>674
Fは空集合、というオチですか?
741:132人目の素数さん
19/12/07 17:40:23.46 r8l5YtX/.net
ちなみに>>372の(1)はBG集合論下ではほぼ自明です。
BFはZFの保存拡大になってたと思うのでその事を認めてもらえれば瞬殺です。
しかしBGがZFの保存拡大になってる証明を見たことないので今回の証明には使いませんでした。
その場合(1)の段階で私の能力では正則性公理が必要になりました。
ZF -正則性公理で(1)が証明できるのかは知りません。
742:132人目の素数さん
19/12/07 17:47:43.87 r8l5YtX/.net
>>675
最後には空集合に到達してしまいます。
Xが正則性の条件を満たすなら自動的にF(X)も正則性の公理を満たします。
何故ならF(X)=x0∋x1∋‥なる列(有限でも無限でも)に対してx1は定義から
X=y0∋y1∋‥∋yn=x1
となる列が見つかりますが、繋げればXスタートの降差列になります。
すなわち
Xが正則性の条件を満たす⇔F(X)が正則性の公理を満たす
です。
743:132人目の素数さん
19/12/07 18:15:32.97 uZFmzNJe.net
>>677
話 聞いてますか?
>>644ではF(X)でなくFと書いてます
>>644の誤りを述べているのですり替えはやめましょうね
シングルトンとは「唯一の要素を持つ集合」ですよね
つまり空集合はシングルトンではないですよね
その場合>>644の書き方では空集合はFの要素になりませんね
しかもシングルトンしかない上に、その要素も
シングルトンとしてFの要素になるといってるから
いつまでたっても終わりませんよ
つまり正則性公理を満たしませんね
744:132人目の素数さん
19/12/07 18:20:27.81 r8l5YtX/.net
>>678
あぁそこですか。
ならF(X)の任意の元がシングルトンまたは空集合にしてください。
この条件をΩが満たす事を彼は認めています。
745:現代数学の系譜 雑談
19/12/07 20:37:35.42 H2e5WMAT.net
>>643
そんなレベルで、哀れな素人さんと、「無限 vs 有限」論争やっているのか?
やれやれだな
>>集合 {0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・}が無限集合なら
>>列 0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・ は、有限で終わらない
>一行目の
>「集合 {0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・}が無限集合なら」
>の前提は必要ありません
>列 0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・ は、有限で終わらない
>それが真実です
「それが真実です」って、それは”無限公理を認めれば”ってことだよ
ツェルメロは、無限公理が必要だと言った
で、無限公理を認めることで、無限集合の存在が導かれる
それが、一行目の
「集合 {0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・}が無限集合なら」
ってことだよ
( くどいが、無限公理を認め 無限公理が適用されることで、
”列 0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・ は、有限で終わらない”が導かれる
つまり、これは無限公理からの直接の帰結ってことですよ!!(超限帰納法は関係ないよ >>613) )
無限公理の意義さえ分からずに、(かつ一階述語論理と高階述語論理との違いも意識せずに)
哀れな素人さんと、
「無限 vs 有限」論争やっているのかい?
やれやれだな
746:132人目の素数さん
19/12/07 20:53:31.16 DlHZa83T.net
>>680
真の無限降下列ではない無限降下列の例まだ?
747:132人目の素数さん
19/12/07 21:19:31.45 uZFmzNJe.net
>>680
「列 0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・ は、有限で終わらない」
だけなら無限公理は必要ありませんね
748:132人目の素数さん
19/12/07 22:03:45.82 r8l5YtX/.net
無限公理なんてスレ主にわかるわけない。
とてもそんなレベルにない。
749:現代数学の系譜 雑談
19/12/07 22:23:09.52 H2e5WMAT.net
>>680 補足
(引用開始)
で、無限公理を認めることで、無限集合の存在が導かれる
それが、一行目の
「集合 {0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・}が無限集合なら」
ってことだよ
( くどいが、無限公理を認め 無限公理が適用されることで、
”列 0、{0}、{{0}}、・・・、{・・{0}・・}n重、・・・ は、有限で終わらない”が導かれる
つまり、これは無限公理からの直接の帰結ってことですよ!!(超限帰納法は関係ないよ >>613) )
(引用終り)
おサルの>>636
>「集合のいかなる∈列も有限長で終わる」
>というのが正則性公理ですから
これ、
理解が間違っているよ
ツェルメロの後者関数
an=suc(an-1)={an-1}
つまり、an-1∈an
ノイマンの後者関数
an=suc(an-1)={Σan-1} (ここに”Σan-1”は、0からn-1までの全ての集合和を表わす)
つまり、an-1∈an
ツェルメロの構成にしろ、ノイマンの構成にしろ
上記の通り
無限公理から、無限集合ができて、
∈列の無限長列を構成する
それは、正則性公理には反しない
正則性公理は、真の無限降下列(>>636)を禁止にするが
上記のツェルメロの構成にしろ、ノイマンの構成にしろ、これらは禁止されていないぞ
だから、おサルは、正則性公理を誤解している
その誤解から、シングルトンの無限列の存在を否定し、また、可算多重シングルトンの存在を否定している
それは、おサルの数学であって、人の数学ではない
750:132人目の素数さん
19/12/07 22:31:48 uZFmzNJe.net
>>684
>無限公理から、無限集合ができて、
>∈列の無限長列を構成する
誤り というより 嘘
無限集合からの無限下降列は構成できない
任意有限長の無限降下列が構成できるだけ
751:132人目の素数さん
19/12/07 23:01:31.03 uZFmzNJe.net
>>684
>正則性公理は、真の無限降下列を禁止にするが
「真の」は要りません 無限降下列は正則性公理と矛盾します
ノイマン構成のω={{},{{}},{{},{{}}},…}でも、
ツェルメロ構成のΩ={{},{{}},{{{}}},…}でも、
無限降下列は存在しません
>シングルトンの無限列の存在を否定し
否定してませんよ
「有限重シングルトンの全体からなる無限集合」を
「シングルトンの無限列」と誤読した
あなたのつたない英語力は全面否定しましたが
あの英語の文章は中1でもわかりますから
752:132人目の素数さん
19/12/07 23:03:00.46 r8l5YtX/.net
超限帰納法が理解できていないレベルの話しではない。
無限公理すら理解できていない。
753:132人目の素数さん
19/12/07 23:21:24.67 DlHZa83T.net
>>684
>無限公理から、無限集合ができて、
>∈列の無限長列を構成する
0∈1∈2∈… は∈無限上昇列な
>それは、正則性公理には反しない
無限重シングルトン {{…}} は∈無限降下列ができるので正則性公理に反します。
バカですか?
754:132人目の素数さん
19/12/07 23:23:45.19 DlHZa83T.net
>>684
真の無限降下列ではない無限降下列の例まだ?
755:現代数学の系譜 雑談
19/12/08 08:30:26.05 lCvi6NdQ.net
>>686
>「有限重シングルトンの全体からなる無限集合」を
>「シングルトンの無限列」と誤読した
1.無限公理を適用して、全ての後者関数を含む無限集合の存在を認める
2.そうすると、無限集合はできるが
このままでは、過剰な後者を含んでいる
欲しいのは、ジャスト自然数の集合N
3.従って、自然数集合Nには不要な、過剰な後者を取り除きます
(要は、無限集合の最小の集合が自然数の集合Nです。無限集合たちの共通部分を取るのでしたね。詳しくは、自然数のノイマン構成のテキストでも見て下さい(過去レスでも書きましたが))
4.で、1~3は、ツェルメロ構成の後者関数 an=suc(an-1)={an-1}を使って同じことができる
5.私が、>>684で言っていることは、
自然数集合Nに不要な過剰な後者の中に、順序数ωに相当する可算多重シングルトンが存在する
ということですよ
QED(^^
756:132人目の素数さん
19/12/08 09:09:09.54 9rv1hojT.net
>>690
>自然数集合Nに不要な過剰な後者の中に、
>
757:順序数ωに相当する可算多重シングルトンが存在する 妄想乙 「過剰な後者を含んでいる」は誤り 正確には「過剰な元を排除できない」 もちろん、無限公理を満たす集合全体の共通集合をとればωになる ついでにいうと可算多重シングルトンは 正則性公理を満たさないので もともと入ってない
758:132人目の素数さん
19/12/08 09:13:35.45 9rv1hojT.net
ついでにいえば、ωは超準的自然数ではありません
超準的自然数はあくまで自然数ですから
759:132人目の素数さん
19/12/08 09:17:45.77 9rv1hojT.net
ある集合論のモデルで、無限公理を満たす集合全体の共通部分をとれば
モデルの中の自然数全体の集合ができあがる
つまり超準的自然数は排除されない
760:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/12/08 09:20:00 lCvi6NdQ.net
>>690
自然数のノイマン構成から、さらに進んで、超限順序数 ω(下記)が構成できる
0, 1, 2, 3, ............, ωは、明らかに無限長である
そして、ノイマン構成では、”前者∈後者” の関係がある
よって、無限長の∈-列が構成できた
QED
追記
なお、ツェルメロ構成に同じ
超限順序数 ωに相当する、ツェルメロ構成の後者即ち可算多重シングルトンが存在する
(可算多重シングルトンを絵や{}の記号で表現できるかどうかは、全く別問題。存在はする)
(参考)
URLリンク(ja.wikipedia.org)
順序数
(抜粋)
順序数の並び方を次のように図示することができる:
0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), S(S(S(ω))), ............, ω + ω, S(ω + ω), S(S(ω + ω)), S(S(S(ω + ω))), ..............................
まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる。そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。
ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく。その後、それらの最小上界(後に ω + ω と呼ばれる)が並び、その後続者たちが無限に続く。だがそれで終わりではない。
無限に続いた後には、必ずそれまでに並んだすべての順序数たちの最小上界が存在し、その後続者、そのまた後続者、... のように順序数の列は"永遠に"続いていくのである。
761:132人目の素数さん
19/12/08 09:25:33 9rv1hojT.net
無限公理の式をみれば、ツェルメロのΩがシングルトンになり得ないことは自明
{}∈Ω
x∈Ω ⇒{x}∈Ω
しかしΩ={x}となるxは存在しない
このことは、フォン・ノイマンのωでも同じ
{}∈ω
x∈ω ⇒x∪{x}∈ω
しかしω=x∪{x}となるxは存在しない
762:132人目の素数さん
19/12/08 09:27:55 9rv1hojT.net
>>694
>0, 1, 2, 3, ............, ωは、明らかに無限長である
>そして、ノイマン構成では、”前者∈後者” の関係がある
>よって、無限長の∈-列が構成できた
2行目が誤り
具体的にいえば、ωには前者が存在しない
したがって、無限長の∈-列は構成できない
Q.E.D
763:132人目の素数さん
19/12/08 09:30:19 9rv1hojT.net
ωの降下列は
0∈1∈・・・∈n∈ω (nは自然数)
とならざるを得ない
ωには直前の元がないから
ツェルメロ構成で同様のことを実現する場合
Ωは任意の自然数を要素として持つ必要がある
したがってシングルトンにはなり得ない
764:132人目の素数さん
19/12/08 09:40:26.91 9rv1hojT.net
蛇足だが、Zermelo構成では
2Ω={Ω、{Ω}、{{Ω}}、・・・}
3Ω={2Ω、{2Ω}、{{2Ω}}、・・・}
Ω^2={Ω、2Ω、3Ω、・・・}
Ω^2+Ω={Ω^2、{Ω^2}、{{Ω^2}}、・・・}
2Ω^2={Ω^2、Ω^2+Ω、Ω^2+2Ω、・・・}
Ω^3={Ω^2、2Ω^2、3Ω^2、・・・}
・・・
Ω^Ω={Ω、Ω^2、Ω^3、・・・}
・・・
となる
765:132人目の素数さん
19/12/08 09:46:47.23 Y56Kog3I.net
>>690
もう1からおかしい。
無限公理とは
ZF公理系における公式な定義は次の通りである。
空集合を要素とし、任意の要素 x に対して x ∪ {x} を要素に持つ集合が存在する:
∃A(∅∈A∧∀x∈A(x∪{x}∈A))
これ以外の意味に勝手に解釈できない。
間違って解釈しないように数学では場合によっては論理式で明示したりする。
もちろん論理式が読めなくても日本語だけから正しく意味がとれてるならいいが、あなたはできてない。
すぐ下に書いてある論理式に合ってない話をしてる。
数学の話をしたいなら結局論理式が読めなきゃ始まらん。
766:132人目の素数さん
19/12/08 10
767::13:12.19 ID:9rv1hojT.net
768:132人目の素数さん
19/12/08 10:18:10.25 ZhMq15Ut.net
>>700
すげかえたなら、挿げ替えたものを用いる事を明示しないといけないし、挿げ替えたものは定理であって公理ではないから証明しないといけない。
なぜそんな基本的な数学の文章が書けないかというと、実際に自分でそれができないから。
自分でできる人間は証明の中のなにが難しくて詳しく説明しないといけないか、何はサラッと流していいかの区別がつかない。
結局自分で論理式一つ読む事すら出来てないから数学の文章書く力がない。
769:132人目の素数さん
19/12/08 10:36:06.93 t+XK+lm2.net
区別がつかないのは証明できない人間だな。
770:132人目の素数さん
19/12/08 11:23:16.93 9rv1hojT.net
>>701
フォンノイマン版もツェルメロ版も同値だけどね
どっちか一方を公理とすれば、他方は証明できる
対応の関数を構成すればいいだけ
771:132人目の素数さん
19/12/08 11:43:51.55 qHcJ5sAq.net
>>703
無限公理についてZermelo晩とNeumann版が同値であるのはいい。
数学をちゃんと勉強した人間ならまぁ何分か考えたらわかる。
なのでいちいち照明しなくてもいい。
問題なのはスレ主がそれをわかってないという所。
特に今問題になってるのはスレ主のΩがほんとに通常のZFCで定義できるか議論してるんだから、
なにが公理で無条件に認めていいのか、何が定理で証明しないといけないのかは通常の状況より厳しく問われている。
ということを何一つ理解できていない。
彼にとって公理も定理もクソもないんだろう。
772:132人目の素数さん
19/12/08 15:09:05.42 9rv1hojT.net
>>704
◆e.a0E5TtKEのΩはシングルトンだそうですから無限集合ではありません
したがって無限公理は関係ないですね
ちなみに正しいツェルメロのΩは無限集合だから無限公理が必要です
あと「彼」のことは当人以外は◆e.a0E5TtKEと呼びます
個人特定のためにわざわざトリップをつけた「好意」を
十二分に活用いたしましょう
773:132人目の素数さん
19/12/08 16:05:05.97 qHcJ5sAq.net
トリップコピペするのすらめんどい。
スレ主以外のトリップはともかくスレ主で特定できるからいいでしょ?
おそらくスレ主が無限公理云々いうのは
・Neumann流の順序数を構成するには無限公理が必要だ。
・無限公理にはどうやらNeumann流とZermelo流のふたつあるらしい。
・なのでとりあえずZermelo流の無限公理よりってかいておくとそれらしくなるっぽい。
くらいの認識しかないんだろう。
もちろんZermelo流の正しいZ(ω)の構成には無限公理が必要だけどもちろん証明が理解できていないスレ主には、なぜ必要なのかも理解できていない。
それが理解できていれば、この段階で別に話をZermelo流の無限公理に取り替える必要などないこともわかる。
だいたい前に集合論の教科書の最初の50ページって書いたけど、それまでに書いてある事なんて整列順序集合とか整列可能定理とかのクソ基本事項だけで普通なら多く見積もっても理解するのに一週間かからない。
そこまで来れば>>327の証明完成させるのもそんなに難しい話ではないしΩなんて妄想なんかいっぺんに吹き飛んでいくはずのもんなんだけど、いつまで経っても理解できない。
まぁ三年も勉強しての現時点でのガロア理論の理解があの程度なんだから一生理解できないのかもしれないけど。
知能の問題ではなく人間性の問題だな。
学問に向いてない。
774:132人目の素数さん
19/12/08 16:42:12.13 9rv1hojT.net
>>706
>コピペするのすらめんどい。
じゃ、ここに書くの面倒でしょ 辞めたら?
◆e.a0E5TtKEは「主」を尊称だと思ってるのでいい気になって使ってます
◆e.a0E5TtKEを喜ばせるのは面白くないので決して使いませんね
775:132人目の素数さん
19/12/08 16:46:33.1
776:4 ID:9rv1hojT.net
777:132人目の素数さん
19/12/08 16:49:52.37 9rv1hojT.net
>>706
>Zermelo流の正しいZ(ω)の構成には無限公理が必要だけど
>もちろん証明が理解できていないスレ主には、
>なぜ必要なのかも理解できていない。
◆e.a0E5TtKEは、そもそも無限公理の式すら知りませんよ
彼は論理式が読めない「式盲」ですから
>それが理解できていれば、この段階で別に話を
>Zermelo流の無限公理に取り替える必要など
>ないこともわかる。
ちょっと何言ってるかわからない(富沢たけし)
ZermeloのΩの構成なんてZermelo流の無限公理そのものですよ
778:132人目の素数さん
19/12/08 16:59:46.95 9rv1hojT.net
>>327は◆e.a0E5TtKEの誤解の核心をついてないので効果ないですね
重要なポイントは「ωには前者がない」ということです
だから正常な人なら「ω∋」と書いて困るわけです
次の文字が書けないから
◆e.a0E5TtKEは嘘つきだから顔色一つ変えずに…で誤魔化します
要するに真実なんてどうでもいいんですよ
嘘つきは他人を騙せればそれでいい
会社でもそうやって生きてきたんでしょう
日本のメーカーの製品なんか詐欺ばっかりですからね
マイナスイオンとか一体何ですか?と尋ねたい
779:132人目の素数さん
19/12/08 19:05:31 vpK8wLxE.net
>>694
真の無限降下列ではない無限降下列の例まだ?
780:132人目の素数さん
19/12/09 02:55:55.18 UtQFSull.net
例ひとつ示せないってことは、自分でも分からずに言ってたんだなw
バカ過ぎw
781:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/12/13 07:56:11 ljJF0g2A.net
これが分り易いかも
Foundation and epsilon-induction
おサルでも読めるだろう
正則性公理が理解出来ていないんだよね(^^;
URLリンク(web.mat.bham.ac.uk)
Foundation and epsilon-induction
(抜粋)
1. Introduction
Either by examining the sets created in the first few levels of the cumulative hierarchy or from other means, via considering the idea of constructions of sets perhaps, we conclude that we do not expect sets to have infinite descending sequences
x0∋x1∋x2∋x3∋x4∋…
at least for sets in the cumulative hierarchy of constructed sets. The axioms of Zermelo-Fraenkel set theory are intended to represent axioms true in this hierarchy, so we expect to have an axiom stating there can be no such descending sequence.
Unfortunately, the statement that there is no such descending sequence is not first order, but second order. This is analogous to the fact that there are nonstandard structures satisfying all first order sentences of arithmetic true in N.
However, the example of arithmetic provides at least one clue as to a powerful axiom scheme true in all structures without infinite descending chains: induction. Applied to set theory we have the axiom scheme of ∈-induction.
Axiom Scheme of ∈-Induction: For all first order formulas ?(x,a??) of the language L∈, ∀a???(∀x?(∀y∈x??(y)→?(x))→∀x??(x,a??)).
We are not going to adopt this as an axiom scheme for Zermelo Fraekel because it will follow from other axioms, and it will be instructive to see how that happens. We will, however, adopt the following special
782: case of ∈-Induction. Axiom of Foundation: ∀x?(∃y?y∈x→∃y?(y∈x∧¬∃z?(z∈x∧z∈y))). Other ways of saying this include: if x is nonepty there is a set y∈x such that y∩x=?; and if x is nonepty there is an ∈-minimal y∈x i.e. one with no z∈x having z∈y. Proposition. The axiom of fountation follows from the axiom scheme of ∈-induction. Proof. 2. Applications
783:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/12/13 07:58:13 ljJF0g2A.net
>>713
追加
URLリンク(en.wikipedia.org)
Epsilon-induction
(抜粋)
In mathematics, ∈-induction (epsilon-induction) is a variant of transfinite induction.
It can be used in set theory to prove that all sets satisfy a given property P(x). This is a special case of well-founded induction.
(引用終り)
以上
784:132人目の素数さん
19/12/13 08:29:35.91 O4JQP8Jj.net
確認なんだけどスレ主は分かってないし当面理解するつもりもないんだよね?
なんで自分が現時点わかってないものを "これがわかりやすいかも" とかの発言ができるん?
785:現代数学の系譜 雑談
19/12/13 10:59:52.17 SYYzk3gC.net
このバカ板で、バカ相手に、
自分が、「なにをどこまで分かっているか」なんてことを
説明するつもりも、必要もない
それは、貴方にとっても同じこと
人が、なにをどこまで分かっているかなど
貴方にとって、なんの重要事項でもないことは自明
そういう質問をすること自身
ことの軽重が分かっていないってことよ
もちろん、スレ主は、バカでアホを自認しておりますw(^^;
(参考)
現代数学の系譜 工学物理雑談 古典ガロア理論も読む79
スレリンク(math板:12番)-
(抜粋)
786:現代数学の系譜 雑談
19/12/13 11:00:57.99 SYYzk3gC.net
>>716 抜けたので追加
スレ主は、皆さんの言う通り、馬鹿であほですから、基本的に信用しないようにお願いします
(引用終り)
787:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/12/13 11:26:57 SYYzk3gC.net
>>716
>そういう質問をすること自身
>ことの軽重が分かっていないってことよ
自分で判断するんだよ
なにが大事で、なにが正しいかを
それが最も重要でね
それが出来ないなら、5CHなんてフェイクだらけで
あなたにとって、意味のない場所
788:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/12/13 11:29:07 SYYzk3gC.net
マジレスすれば、自分が分かり易いと思ったから、そう書いただけのこと
貴方にとって分かりにくい?
それは、残念でしたね(^^;
789:132人目の素数さん
19/12/13 23:05:14.34 JvzMwWQg.net
>>717
言われなくても時枝が不成立だとか、{{…}}が正則性公理に反しないとか
のバカ発言は一切信用してませんよ?
790:現代数学の系譜 雑談
19/12/14 07:26:09.28 s6Tab8iq.net
>>720
おまえの負けだな
1.「信用」? 数学は信用でやるものだったのか?
2.5CHは、基本は匿名の名無しさんだよね? 日替わりIDの匿名さんを「信用」? バカじゃね(^^
3.自ら、”自分は数学は不出来で、分かりません”と自白しているってことよね
791:現代数学の系譜 雑談
19/12/14 07:47:25.56 s6Tab8iq.net
>>713
文字化けを直して、再引用しよう
URLリンク(web.mat.bham.ac.uk)
Foundation and epsilon-induction
(抜粋)
1. Introduction
Either by examining the sets created in the first few levels of the cumulative hierarchy or from other means, via considering the idea of constructions of sets perhaps, we conclude that we do not expect sets to have infinite descending sequences
x0∋x1∋x2∋x3∋x4∋…
at least for sets in the cumulative hierarchy of constructed sets.
The axioms of Zermelo-Fraenkel set theory are intended to represent axioms true in this hierarchy, so we expect to have an axiom stating there can be no such descending sequence.
Unfortunately, the statement that there is no such descending sequence is not first order, but second order.
This is analogous to the fact that there are nonstandard structures satisfying all first order sentences of arithmetic true in N.
However, the example of arithmetic provides at least one clue as to a powerful axiom scheme true in all structures without infinite descending chains: induction.
Applied to set theory we have the axiom scheme of ∈-induction.
Axiom Scheme of ∈-Induction:
For all first order formulas Φ(x,a ̄) of the language L∈, ∀a ̄(∀x(∀y∈xΦ(y)→Φ(x))→∀xΦ(x,a ̄)).
We are not going to adopt this as an axiom scheme for Zermelo Fraekel because it will follow from other axioms, and it will be instructive to see how that happens. We will, however, adopt the following special case of ∈-Induction.
Axiom of Foundation: ∀x(∃y y∈x→∃y(y∈x∧¬∃z(z∈x∧z∈y))).
792:現代数学の系譜 雑談
19/12/14 07:55:52.35 s6Tab8iq.net
>>722
<Google翻訳>(少し手直し)
基礎とイプシロン帰納
(抜粋)
1.はじめに
累積hierarchyの最初のいくつかのレベルで作成された集合を調べることによって、または他の手段から、おそらく集合の構築のアイデアを検討することにより、集合が無限の降順シーケンスを持つことを期待しないと結論付けます
x0∋x1∋x2∋x3∋x4∋…
少なくとも、構築された集合の累積hierarchy内の集合については。
Zermelo-Fraenkel集合理論の公理は、このhierarchyで真である公理を表すことを目的としているため、このような下降シーケンスは存在できないという公理を持つことが期待されます。
残念ながら、このような降順がないというステートメントは、1次ではなく2次です。
これは、Nで真の算術のすべての1次文を満たす非標準構造があるという事実に類似しています。
ただし、算術の例では、無限の降順チェーンのないすべての構造に当てはまる強力な公理スキームに関する少なくとも1つの手がかりが得られます。
集合論に適用すると、ε-帰納の公理スキームがあります。
ε-帰納の公理スキーム:
言語L∈のすべての一次式Φ(x、a ̄)について、∀a ̄(∀x(∀y∈xΦ(y)→Φ(x))→∀xΦ(x、a ̄))。
Zermelo Fraekelの公理スキームとしてこれを採用するつもりはありません。これは他の公理から得られるものであり、それがどのように起こるかを知ることは有益だからです。ただし、次の特別なケースのε-Inductionを採用します。
基礎公理:∀x(∃yy∈x→∃y(y∈x∧¬∃z(z∈x∧z∈y)))。
793:現代数学の系譜 雑談
19/12/14 08:03:47.91 s6Tab8iq.net
>>723
>累積hierarchyの最初のいくつかのレベルで作成された集合を調べることによって、または他の手段から、おそらく集合の構築のアイデアを検討することにより、集合が無限の降順シーケンスを持つことを期待しないと結論付けます
>x0∋x1∋x2∋x3∋x4∋…
>少なくとも、構築された集合の累積hierarchy内の集合については。
言いたいことは、単純で
無限の降順シーケンス
x0∋x1∋x2∋x3∋x4∋…
は、ダメってことね
で、
無限の上昇シーケンス
x0∈x1∈x2∈x3∈x4∈…
は、OKってことね
で、2つのシーケンスを比較する
降順:x0∋x1∋x2∋x3∋x4∋…
上昇:x0∈x1∈x2∈x3∈x4∈…
シーケンスの長さとしては、どちらも可算無限
で、降順はダメで、上昇はOK
∵ 上昇シーケンスを禁止したら、Zermelo-Fraenkel集合理論の公理から、可算無限 例えば自然数Nの無限列が生まれないから、自然数Nが生まれない
794:現代数学の系譜 雑談
19/12/14 08:13:25.11 s6Tab8iq.net
>>724 つづき
<ノイマン構成>
0 := {}, suc(a) :=a∪{a} と定義する
0 を含み後者関数について閉じている集合のひとつを M とする。
自然数は「後者関数について閉じていて、0 を含む M の部分集合の共通部分」として定義される。
無限集合の公理により集合 M が存在することが分かり、このように定義された集合がペアノの公理を満たすことが示される。
このとき、それぞれの自然数は、その数より小さい自然数全てを要素とする数の集合、となる。
0 := {}
1 := suc(0) = {0} = {{}}
2 := suc(1) = {0, 1} = {0, {0}} = { {}, {{}} }
3 := suc(2) = {0, 1, 2} = {0, {0}, {0, {0}}} = { {}, {{}}, { {}, {{}} } }
等々である[3]。
以上の構成は、自然数を表すのに有用で便利そうな定義を選んだひとつの結果であり、他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。
<Zermelo構成>
0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
と非常に単純な自然数になる。
795:132人目の素数さん
19/12/14 08:22:24.76 CsbquFhS.net
>>724
>降順はダメで、上昇はOK
なぜだかわかるかい?
上昇列のどの項から下降しても有限ステップで{}に至るからだよ
つまり上昇列には無限重の{…}は現れない
これ豆な
796:132人目の素数さん
19/12/14 08:29:59.21 CsbquFhS.net
>>725
ノイマン構成のωはいかなる集合aのa∪{a}にもならないし
ツェルメロ構成のΩはいかなる集合aの{a}にもならない
つまりどちらも次者関数でつくられるものではない
Ωが全ての有限重{…}より大きく、
Ωから{}への降下列が有限長である
ようにするには、Ωが全ての有限重{…}を
要素として持つようにすればいい
797:現代数学の系譜 雑談
19/12/14 08:37:06.35 s6Tab8iq.net
>>725 つづき
<ノイマン構成>にしろ、<Zermelo構成>にしろ
0,1,2,3,・・・たちを集合として見たら
上昇列:0∈1∈2∈3∈4∈…
が構成される
これは、可算無限長の上昇列
で、<ノイマン構成>と<Zermelo構成>とは、一�