19/11/30 20:50:25.23 4Ujjq2jv.net
>>538
つづき
Nous allors demontrer qu'un ensemble fini d'apres cette definition l'est aussi au sens ordinaire et reciproquement.
En d'autres termes: pour qu'un ensemble soit fini d'apres la definition proposee, il faut et il suffit que le nombre de ses elements puisse etre exprime par un nombre naturel (la notion de nombre naturel etant supposee connue).
En effet,soit M un ensemble dont le nombre d'elements peut etre exprime par un nombre naturel; soit Z une classe quelconque satisfaisant aux conditions 1-3.
Nous allons montrer que tout sous-ensemble de M appartient a Z.
Il en est ainsi - en vertu de la condition 2 - des sous-ensembles composes d'un seul element; en meme temps, s'il en est ainsi des sous-ensembles contenant n elements, il en est de meme - d'apres 3 - de ceux qui en contiennent n+l.
Comme le nombre d'elements de chaque sous-ensemble de M se laisse exprimer par un nombre naturel, il en resulte par induction que Z contient tous les sous-ensembles de M.
Donc, la classe Z etant necessairement identique a celle de tous les sous-ensembles de M, elle est l'unique classe satisfaisant aux conditions 1-3.
A