現代数学の系譜 カントル 超限集合論at MATH
現代数学の系譜 カントル 超限集合論 - 暇つぶし2ch49:現代数学の系譜 雑談
19/10/05 14:48:04.21 JrhjRl4x.net
>>31
さて、
「自然数 ノイマン構成の集合Nから、{・・・{Φ}・・・}({}はω重)なる集合が取り出せる」話(^^
・自然数
ノイマン構成
0:Φ
1:{Φ}
2:{Φ,{Φ}}→{{Φ}}(一番右以外のΦを除く。{}は2重)
3:{Φ,{Φ},{Φ,{Φ}}}→{{{Φ}}}(一番右以外のΦを除くことを繰返す)
 ・
 ・
n:{Φ,{Φ},{Φ,{Φ}},・・}→{・・{Φ}・・}(一番右以外のΦを除くことを繰返す。{}はn重)
 ・
 ・
ω:N={Φ,{Φ},{Φ,{Φ}},・・・}→{・・・{Φ}・・・}(一番右以外のΦを除くことを繰返す。{}はω重)
自然数 ノイマン構成の集合Nから、{・・・{Φ}・・・}({}はω重)なる集合が取り出せる
これが、ツェルメロ構成のω {・・・{Φ}・・・}({}はω重)に相当しますね
つまり、ノイマン構成とツェルメロ構成とは、一対一に対応していますよ。当たり前ですが(^^
なので、ノイマン構成でωが可能なら、ツェルメロ構成でそれに相当する集合ωが存在し得るのです
ここで、
”(一番右以外のΦを除くことを繰返す。{}はn重)”とか
”(一番右以外のΦを除くことを繰返す。{}はω重)”とかは
分出公理(下記)を(繰り返し)使うと思います
(参考)
URLリンク(ja.wikipedia.org)
ペアノの公理
(抜粋)
この構成法はジョン・フォン・ノイマンによる[1]。
URLリンク(tech-blog.rei-frontier.jp)
Rei Frontier Tech Blog
2017-11-02
ZFC公理系について:その1
(抜粋)
分出公理と共通部分
次の公理を導入しましょう。
(Set6') 分出公理
∀a∃b∀x(x∈b⇔x∈a∧P(x)).
"普通の言葉"で述べると、
「任意の集合aに対して、P(x)が成り立つようなaの元xの全体からなるaの部分集合bが存在する」といえます。
番号にダッシュ'がついているのは、分出公理は後々に出てくる公理から証明されるので、ZFCに数える必要がないためです。
外延性公理によってこのようなbは確定し、
{x∈a?P(x)}
と表されます。
(引用終り)


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch