19/10/05 12:08:56.14 JrhjRl4x.net
>>19
(引用開始)
ノイマン宇宙のV_ωには
{}、{{}}、{{{}}}、…
という{}の有限重の集合は全て存在する
しかし、{}の無限重の集合は存在しない
(引用終り)
おやおや
公理的集合論では、どんな奇妙な集合でも、禁止されていない集合は存在しうる
だから、出現して困る集合は、公理で禁止する必要がある
そのための、正則性公理
そうして、正則性公理は、無限上昇列を禁止するものではない
例 ノイマンの自然数構成N=ω (>>6)
0∈1∈2∈3∈・・・∈n∈n+1・・・ ∈N=ω
では、ツェルメロの自然数構成で
0:Φ
1:{Φ}
2:{{Φ}}
・
・
n:{・・{Φ}・・} n重
これで、全ての有限の自然数は構成できる
無限公理で、Nとωが出来たあとに、
ω:{・・{Φ}・・} ω重
と定義すれば良い
まあ、これが、ツェルメロの自然数構成の弱点であり、批判されるところでもあります(^^
自然に、N=ωが出るノイマン構成の方がはるかに綺麗です