19/10/12 09:18:29.19 0oc9Ztsl.net
>>275
どうも。レスありがとう
>{n | ∃xn‥∈ x3∈ x2∈x1, Ω=x1}
>には最大値が存在してしまうのでは?
別に言い訳するつもりはないけど
>>272で同意したのは、
ツェルメロ構成では、「どこまで行っても単元集合しか出てこない」ということなのです
で、あなたの
{n | ∃xn‥∈ x3∈ x2∈x1, Ω=x1}
に対して
>>266では
F(X)={Y|∃x1∈ x2∈ x3∈‥xn Y=x1, X=xn}
だったでしょ
つまり、順序が逆
例えば
1,2,3,・・・,n
は上昇列だが
-n,・・・,-3,-2,-1
降下列です
公理的集合論から、自然数N(0,1,2,3,・・・,n,・・)が得られた後に
整数Zを構成して、負数 -n,・・・,-3,-2,-1 なる降下列の構成(無限降下列も可)は、ありでしょう
いま、問題にしていることは、公理的集合論で
空集合Φから、後者関数のみを使って、作った集合で∈順序がどうなるか(無限降下列が存在するかどうか)?
それは、後者関数の作り方にもよるけど、選択公理(あるいは可算選択公理)にも関連しているらしい(>>269)(^^
(もちろん、正則性公理も重要)
そして、たとえ有限を扱っていても、青天井(いくらでも大きな)なら、
「いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならない」
(レーヴェンハイ-スコーレムの定理)みたいなことになる(>>251)
で、まとまらないけど、
要するに、負数 -n,・・・,-3,-2,-1 なる降下列は、今論じている∈順序とは別と思う(おそらく一般的な順序型の議論になる)
これ以上の細かい議論は、>>266 ID:YULRpgNc さんとよろしく
(もしあなたと同一人物ならご容赦)
(参考)
URLリンク(ja.wikipedia.org)
レーヴェンハイ-スコーレムの定理
(抜粋)
定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す。
この事実を定理の一部とする場合もある。