現代数学の系譜 カントル 超限集合論at MATH
現代数学の系譜 カントル 超限集合論 - 暇つぶし2ch300:132人目の素数さん
19/10/12 08:10:24.44 Ty9mG3gK.net
>>272
では
{n | ∃xn‥∈ x3∈ x2∈x1, Ω=x1}
には最大値が存在してしまうのでは?
∵) 最大値がないとする。
任意にmをとるとき長さmの列
xmn‥∈ xm3∈ xm2∈xm1, Ω=xm1
が存在するが
全てのm,l≧1でΩ=xm1=xl1なのでこれをx1とおく。
全てのm≧2でxm2∈x1、x1はsingletonなのでxm2は共通。これをx2とおく。
全てのm≧3でxm3∈x2、x1はsingletonなのでxm3は共通。これをx3とおく。
‥‥
この時‥‥x3∈x2∈x1は無限降鎖列により正則性公理に矛盾。□
正則性公理は外せないけどもう少しうまくやればACも外せるし。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch