19/10/12 08:10:24.44 Ty9mG3gK.net
>>272
では
{n | ∃xn‥∈ x3∈ x2∈x1, Ω=x1}
には最大値が存在してしまうのでは?
∵) 最大値がないとする。
任意にmをとるとき長さmの列
xmn‥∈ xm3∈ xm2∈xm1, Ω=xm1
が存在するが
全てのm,l≧1でΩ=xm1=xl1なのでこれをx1とおく。
全てのm≧2でxm2∈x1、x1はsingletonなのでxm2は共通。これをx2とおく。
全てのm≧3でxm3∈x2、x1はsingletonなのでxm3は共通。これをx3とおく。
‥‥
この時‥‥x3∈x2∈x1は無限降鎖列により正則性公理に矛盾。□
正則性公理は外せないけどもう少しうまくやればACも外せるし。
301:現代数学の系譜 雑談
19/10/12 09:18:29.19 0oc9Ztsl.net
>>275
どうも。レスありがとう
>{n | ∃xn‥∈ x3∈ x2∈x1, Ω=x1}
>には最大値が存在してしまうのでは?
別に言い訳するつもりはないけど
>>272で同意したのは、
ツェルメロ構成では、「どこまで行っても単元集合しか出てこない」ということなのです
で、あなたの
{n | ∃xn‥∈ x3∈ x2∈x1, Ω=x1}
に対して
>>266では
F(X)={Y|∃x1∈ x2∈ x3∈‥xn Y=x1, X=xn}
だったでしょ
つまり、順序が逆
例えば
1,2,3,・・・,n
は上昇列だが
-n,・・・,-3,-2,-1
降下列です
公理的集合論から、自然数N(0,1,2,3,・・・,n,・・)が得られた後に
整数Zを構成して、負数 -n,・・・,-3,-2,-1 なる降下列の構成(無限降下列も可)は、ありでしょう
いま、問題にしていることは、公理的集合論で
空集合Φから、後者関数のみを使って、作った集合で∈順序がどうなるか(無限降下列が存在するかどうか)?
それは、後者関数の作り方にもよるけど、選択公理(あるいは可算選択公理)にも関連しているらしい(>>269)(^^
(もちろん、正則性公理も重要)
そして、たとえ有限を扱っていても、青天井(いくらでも大きな)なら、
「いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならない」
(レーヴェンハイ-スコーレムの定理)みたいなことになる(>>251)
で、まとまらないけど、
要するに、負数 -n,・・・,-3,-2,-1 なる降下列は、今論じている∈順序とは別と思う(おそらく一般的な順序型の議論になる)
これ以上の細かい議論は、>>266 ID:YULRpgNc さんとよろしく
(もしあなたと同一人物ならご容赦)
(参考)
URLリンク(ja.wikipedia.org)
レーヴェンハイ-スコーレムの定理
(抜粋)
定理の上方部分の証明は、いくらでも大きな有限のモデルを持つ理論は無限のモデルを持たねばならないことをも示す。
この事実を定理の一部とする場合もある。
302:現代数学の系譜 雑談
19/10/12 09:26:43.89 0oc9Ztsl.net
>>276 タイポ訂正
レーヴェンハイ-スコーレムの定理
↓
レーヴェンハイム-スコーレムの定理
(二箇所)
な(^^;
303:132人目の素数さん
19/10/12 09:26:58.57 9mz947Hb.net
>>276
>>275の証明中にでてくる集合にはF(Ω)しかでませんよ?
向き関係ありません。
まだ無限列は出てきてないし。
304:132人目の素数さん
19/10/12 09:30:11.84 9mz947Hb.net
集合の元ね。
F(Ω)の元しかありません。
もし>>275の証明に納得�
305:ェいかないなら証明中の ××はsingletonであるから という下りのところがおかしいという説ですが、ここにF(Ω)の元しか出てこないのはわかりますか?
306:現代数学の系譜 雑談
19/10/12 09:37:23.07 0oc9Ztsl.net
>>272-273 補足
ツェルメロ構成での前者関数eの集合和Σen は、
>>276との関連で言えば
包含関係での⊂順序にはなるが、
帰属関係の∈順序にはならない
それは、公理という視点では、問題でしょうね
(∵ ∈だけで話を済ますのが綺麗。⊂は、定義されていないのだから)
307:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/10/12 09:45:09 0oc9Ztsl.net
>>278-279
?
(>>272より)
ツェルメロ構成:
後者関数e;suc(a)e := {a} (aのシングルトン {a} )
これで a∈ {a}
つまり、前者集合e ∈ 後者集合e
ですよ。逆転はない
308:132人目の素数さん
19/10/12 10:00:47.57 9mz947Hb.net
いや、>>275の証明について行ってるんですよ。
では順に行きましょう。
xm1がΩなので共通なのはいいでしょ?
次にxm2(m≧2)について全てのmについて
xm2∈x1=Ω、かつΩがsingletonなのでxm2は共通。
すなわち
x22=x32=x42=‥‥
なのは認めますか?
309:現代数学の系譜 雑談
19/10/12 10:06:43.68 0oc9Ztsl.net
>>269
<補足参考>
従属選択公理(axiom of dependent choice)は、ADCか
URLリンク(alg-d.com)
従属選択公理について 壱大整域 2013年10月25日
(抜粋)
定義 次の命題を従属選択公理(axiom of dependent choice)という.
非空集合 X 上の二項関係 R⊂X×X が「任意の x∈X に対してある y∈X が存在して xRy」を満たすとき,Xのある点列 { xn }n∈ωが存在して任意の n に対して xnRxn+1 となる.
命題1 選択公理 ⇒ 従属選択公理
命題2 従属選択公理 ⇒ 可算選択公理
定理 選択公理 ⇔ 任意の順序数αに対してDC(α)が成り立つ.
選択公理は、AC
URLリンク(ja.wikipedia.org)
選択公理(せんたくこうり、英: axiom of choice、選出公理ともいう)
(抜粋)
なお、ZF(ツェルメロ=フレンケルの公理系)に一般連続体仮説を加えると選択公理を証明できる[2]。
従って、一般連続体仮説と選択公理は何れもZFとは独立だが、前者の方がより強い主張であると言える。
可算選択公理は、ACCやACω
URLリンク(ja.wikipedia.org)
可算選択公理(英: Axiom of countable choice)ACωとも表記される
連続体仮説は、CH
URLリンク(ja.wikipedia.org)
連続体仮説(れんぞくたいかせつ、Continuum Hypothesis, CH)
決定性公理は、ADか
URLリンク(ja.wikipedia.org)
決定性公理 (けっていせいこうり、英: axiom of determinacy)
URLリンク(en.wikipedia.org)
Axiom of determinacy
310:現代数学の系譜 雑談
19/10/12 10:07:50.87 0oc9Ztsl.net
>>282
どうぞ、>>275の方とお願い致します。
311:132人目の素数さん
19/10/12 10:12:11.17 fCB4Xy97.net
>>284
あれ?認められないの?
312:132人目の素数さん
19/10/12 10:13:43.04 fCB4Xy97.net
なぜ?
313:132人目の素数さん
19/10/12 10:30:09.64 zrApsl4A.net
>>275みたいに全部数式だと無理なのかな?
長さに上限がないとすると各自然数に対して
Ω=x11
Ω=x21∋x22
Ω=x32∋x32∋x33
Ω=x41∋x42∋x43∋x44
‥‥
が取れる。
どの列も長さ有限。昇順も降順もない。
するとここに出てくるxijは>>266を認めると全部singletonになるので縦に並んでる元が全部同一になってしまう。
するとxiiを並べてできる列が
x11∋x22∋x33∋‥‥
を満たしてしまうんだけど?
314:現代数学の系譜 雑談
19/10/12 11:56:57.56 0oc9Ztsl.net
>>287
申し訳ないが、意味が取れない
1)下記、Zermelo (1908b) ”(b) the existence, for any object a, of
315:the singleton set {a} which has a as its sole member” 2)これは、>>175の通り、ZFCでは、対の公理で「a → {a}」が言える 3)で、Zermelo (1908b)では正則性公理は、無かった(∵1925年にジョン・フォン・ノイマンによって導入された) 4)しかし、ZFCの対の公理による「a → {a}」の the singleton set {a}生成 に、正則性公理からの規制(有限回に限られる?)があると、そういう話はないでしょ? じゃ、ZFCの対の公理による「a → {a}」の the singleton set {a}生成が、これの超限回繰返しが可能なわけですよね (>>224より) https://plato.stanford.edu/entries/zermelo-set-theory/ Stanford Encyclopedia of Philosophy Zermelo’s Axiomatization of Set Theory Michael Hallett First published Tue Jul 2, 2013 (抜粋) 1. The Axioms Given this, the one fundamental relation is that of set membership, ‘ε’ , which allows one to state that an object a belongs to, or is in, a set b, written ‘a ε b’.[4] Zermelo then laid down seven axioms which give a partial description of what is to be found in B. These can be described as follows: I.Extensionality This says roughly that sets are determined by the elements they contain. II.Axiom of Elementary Sets This asserts (a) the existence of a set which contains no members (denoted ‘0’ by Zermelo, now commonly denoted by ‘?’); (b) the existence, for any object a, of the singleton set {a} which has a as its sole member; and (c) the existence, for any two objects a, b, of the unordered pair {a, b}, which has just a, b as its members. https://ja.wikipedia.org/wiki/%E6%AD%A3%E5%89%87%E6%80%A7%E5%85%AC%E7%90%86 正則性公理(せいそくせいこうり、英: axiom of regularity)は、別名基礎の公理(きそのこうり、英: axiom of foundation) とも呼ばれ、ZF公理系を構成する公理の一つで、1925年にジョン・フォン・ノイマンによって導入された。
316:132人目の素数さん
19/10/12 12:08:13.78 Ty9mG3gK.net
>>288
どの行がわからないですか?
仮定は降鎖列の長さに最大値が無いですね。
では長さ1の列があるからそれを
Ω=x11
とおくのはいいですよね?
次に長さ2の列もあるから
Ω=x21∋x22
もありますよね?
以下
Ω=x32∋x32∋x33
Ω=x41∋x42∋x43∋x44
といくらでも長いのがあるのでACであらかじめ取れますよね?(ほんとはACいらないけど、それは多分納得してもらえそうに無いので諦めます)
ここまでは理解できますか?
317:現代数学の系譜 雑談
19/10/12 13:52:28.42 0oc9Ztsl.net
>>289
(>>287において)
1)定義が無い。 x11とは? これは何ですか?
2)Ω=x11、Ω=x21∋x22? これは何ですか?
「Ω=x11」と「Ω=x21∋x22」とで、二つのΩは別ものですよね、明らかに。これ、記号の濫用ですか?
3)x11∋x22∋x33∋‥‥? これは何ですか?
例えば、「x11∋x22」の証明は? 略証でもいいけど
318:現代数学の系譜 雑談
19/10/12 13:59:45.75 0oc9Ztsl.net
>>288
> 2)これは、>>175の通り、ZFCでは、対の公理で「a → {a}」が言える
補足
繰返すが、どんな集合であれ、対の公理で「a → {a}」が言えるのです
これは、公理だから、無制限に成立します(有限に限らない)
aが、たとえ無限集合でも、まとめて、the singleton set {a} にできる
回数は、無制限です
1)例えば、aが実数の集合Rで非可算無限集合としても、{R}はシングルトンです
2)そこで分り易く、素朴集合論で、おもりに例えてみよう(分かり易さは人によるけど(^^ )
おもりの列:1g,2g,3g,・・ng・・
これ、全部1元集合の列で、シングルトンの列。集合の濃度は1です
しかし、おもりは重さという指標をもっている
そして、順序列を成す
1g<2g<g3<・・<ng<・・ (可算自然数N内とします)
です
3)そして、重さという指標の順序列で、極限で極限順序数ωが可能
4)それには、>>287みたく二次元の指標 (x,y)を使えば良い(下記 直積集合上の順序「辞書式順序」 ご参照)
(0,1g)<(0,2g)<(0,3g)<・・<(0,ng)<・・<(
319:1,1g)<(1,2g)<(1,3g)<・・<(1,ng)<・・ とすれば良い この場合、(0,ng)<・・の後の、最初の(1,1g)がωに相当します。順序型という意味の対応でね (参考) https://ja.wikipedia.org/wiki/%E9%A0%86%E5%BA%8F%E9%9B%86%E5%90%88 順序集合 直積集合上の順序 ・辞書式順序: (a,b) <= (c,d) ⇔ a<c ∨ (a=c ∧ b<=d) つづく
320:現代数学の系譜 雑談
19/10/12 14:00:58.59 0oc9Ztsl.net
>>291
つづき
(追加参考)
URLリンク(www.math.okayama-u.ac.jp)
Prof. Dr. YUJI YOSHINO
Department of Mathematics
Faculty of Science
Okayama University
URLリンク(www.math.okayama-u.ac.jp)
Teaching (in Japanese) Old Lectures
URLリンク(www.math.okayama-u.ac.jp)
2003年度「代数基礎」講義(2回生用)YUJI YOSHINO 岡山大
集合の記号になれる
(抜粋)
P11
3.2 順序数
? 各整列集合の同型類にひとつずつ「名前」をつける。与えられた整列集合が属する同型類の名前をその整列集合の順序数という。
? 有限整列集合 {1, 2, . . . , n} の順序数を n と書く。(心は nth の意味。)
? 整列集合 N の順序数を通常 ω で表す。
? 辞書式順序の定義。
? S と T が整列集合のとき,辞書式順序で S × T もまた整列集合である。
? 順序集合の合併。
? S と T が整列集合のとき,その合併 S + T もまた整列集合である。
? S と T が整列集合で,それぞれの順序数が α, β のとき,その和 α + β を S + T の順序数,その積
α ・ β を S × T の順序数として定義する。
例題 3.2.1 n ∈ N について,n + ω = ω である。一方, ω + n 6= ω である。理由を考えよ。
例題 3.2.2 n ∈ N について,n ・ ω 6= ω ・ n である。実際,ω ・ 2 = ω + ω, 2 ・ ω = ω である。
定理 3.2.3 (整列集合の比較定理) 二つの整列集合 S と T があるとき,つぎのどれかひとつだけが必ず
成立する。
(1) S と T は順序同型である。
(2) a ∈ S が存在して,S < a > と T は順序同型である。
(3) b ∈ T が存在して,S と T < b > は順序同型である。
? S と T の順序数がそれぞれ α, β であるとする。(1) ~ (3) の状況のとき,それぞれ α = β, α > β,
α < β と定義する。
系 3.2.4 (順序数の比較可能定理) α, β が順序数のとき,α = β, α > β, α < β のどれかひとつだけが必
ず成立する。
例題 3.2.5 1 < 2 < ・ ・ ・ < ω < ω + 1 < ・ ・ ・ < ω ・ 2 < ω ・ 2 + 1 < ・ ・ ・ < ω ・ 3 < ・ ・ ・ < ω ・ ω < ・ ・
321:132人目の素数さん
19/10/12 14:01:37.70 Ty9mG3gK.net
ではもう少し詳しく書きます。
仮定は
Ω=x1∋x2∋‥‥∋xm
なる形の列の長さに上限がないですね。
この仮定の元に自然数mに対して
X[m]={(x1,x2,‥,xm) | x1=Ω, x[i]∋x[i+1]}
がいずれも空集合にならない事は理解できますか?
条件を満たすいくらでも長いものがある
⇒条件を満たす任意の長さのものがある
です。
322:現代数学の系譜 雑談
19/10/12 14:30:59.97 0oc9Ztsl.net
>>292
> 有限整列集合 {1, 2, . . . , n} の順序数を n と書く。(心は nth の意味。)
そうそう、日本語では、基数詞(簡単には個数を数える)と序数詞(順番)との区別が、助数詞(個・番など)でなされる
前者は1個2個で、後者は1番2番など
数学においては、”nth”は略して書かないので、日本語記法に近い
が、ノイマンとかツェルメロとか、彼らの思考は基数詞(Cardinal)と序数詞(Ordinal)とが峻別されているのです、きっと(^^
だから、かれらの文書を読むとき、「Cardinalの話なのか、Ordinalの話なのか」を、日本人はしっかり意識しておかないと
迷走してしまいがちです
そして、いまの議論は、全部シングルトンだからCardinalは1だが
しかし、順序型(Ordinal)としてはωに相当する列のシングルトンの集合が存在しうるよということ
(参考)
URLリンク(ja.wikipedia.org)
323:5%B0%E8%A9%9E 数詞(すうし)とは、数を表す語である。言語及び数詞の種類により、名詞、形容詞、限定詞などの下位の品詞に分類されるが、その性質は独特である。 (抜粋) 基数詞 基数詞(きすうし)とは、基数、すなわち分けて数えられるものの個数を表す数詞である。日本語の「いち」、「に」、「さん」は基数詞である。 序数詞 序数詞(じょすうし)あるいは順序数詞(じゅんじょすうし)とは、順序数、すなわち分けて数えられるものの順番を表す数詞である。 通常は基数詞から規則的に求められるが、小さい整数では不規則変化や補充形が見られる。例えば英語の序数詞は、first , second は補充形、third は不規則、fourth からは規則的(但し、21以降は一の位の数に従う)であり、フランス語では premier は補充形、deuxieme からは規則的である。 日本語では単独で序数詞を表すものはないが、「第-」を漢数詞(助数詞が付く場合は、算用数字で表すこともある)の前に付けるか、「-目」「-位」を助数詞の後に付けて表現される。 ・第二、第二回 ・二番目、二回目 https://ja.wikipedia.org/wiki/%E5%8A%A9%E6%95%B0%E8%A9%9E 助数詞 (抜粋) 日本語の助数詞はバラエティに富んでおり、「個」、「匹」(動物)、「本」(細長いもの)、「枚」(平たいもの、厚みのないもの)など高頻度で多くの語に用いられる
324:現代数学の系譜 雑談
19/10/12 15:04:06.24 0oc9Ztsl.net
>>293
(引用開始)
仮定は
Ω=x1∋x2∋‥‥∋xm
なる形の列の長さに上限がないですね。
(引用終り)
その記法は、混乱の元と思います
もし、有限長さmならば
Ω=xm∋xm-1∋‥‥∋x2∋x1
と番号を付け直すべきですよ
そうしないと、大変混乱するでしょうね
正則性公理は、「空でない集合 x には ∈ に関して極小となる元 z ∈ x があること」ですからね
極小となる元を、1番にすべきですね
(参考)
URLリンク(www.math.tsukuba.ac.jp)
坪井明人
URLリンク(www.math.tsukuba.ac.jp)
学群関係
URLリンク(www.math.tsukuba.ac.jp)
数理論理学II 坪井明人 筑波大
1.1.10 基礎の公理(正則性公理)
x ≠ Φ → ∃y(y ∈ x ∧ ¬∃z(z ∈ x ∧ z ∈ y)).
空でない集合 x には ∈ に関して極小となる元 z ∈ x があること,
を直観的には意味している.
URLリンク(ja.wikipedia.org)
正則性公理
(抜粋)
以下の4つの主張はいずれも同値であり、どれを正則性の公理として採用しても差し支えない。
・任意の空でない集合xに対して、∃y∈x,x∩y=0
・∀xについて、∈がx上well-founded
・∀xについて、無限下降列である x∋x1∋x2∋・・・ は存在しない。
(引用終り)
325:132人目の素数さん
19/10/12 15:05:46.80 Ty9mG3gK.net
>>295
好きに番号はつけて下さい。
>>293の各X[m]がいずれも空集合にならない事は理解できますか?
326:現代数学の系譜 雑談
19/10/12 15:26:20.58 0oc9Ztsl.net
>>294
再度まとめておきます
現代数学の無限の議論で、
1.整列可能定理と関連して、デデキント無限とかの関連で(>>236-238)どこまでの強さの選択公理を採用するか(>>283)の問題がある
可算選択公理<従属選択公理<選択公理<連続体仮説
ですね。決定性公理は、別の系統なのでしょうね
2.レーヴェンハイム-スコーレムの定理に関連して(>>251-252)
一階述語論理に限定するのか? それとも、二階以上の高階述語論理を採用するのか?
ゲーデル先生ご存命の20世紀前半は一階述語論理全盛で、「二階以上はパラドックスのおそれあり」で忌避されていた傾向あり
ところが、いろいろあって、圏論などもその1つと思うが、「二階以上もやろう」という流れができた
3.あと、逆数学なんて流れもあるようです(「現代数学の全部を�
327:ヤ羅する公理系ではなく、分野毎に特化した公理系」なのでしょうかね?) https://ja.wikipedia.org/wiki/%E9%80%86%E6%95%B0%E5%AD%A6 逆数学 (抜粋) 逆数学とは、数学の定理の証明に必要な公理を決定しようとする数理論理学のプログラムである。簡単に言えば、通常の数学が公理から定理を導くのとは逆に、「定理から公理を証明する」手法を用いることが特徴である。 「選択公理とツォルンの補題はZF上で同値である」、というような集合論の古典的定理は、逆数学プログラムの予兆となるものだった。しかし、実際の逆数学では主に、集合論の公理ではなく、通常の数学の定理を研究するのを目的とする。 逆数学は大抵の場合、2階算術について実行され、定理が構成的解析と証明論に動機付けられた2階算術の部分体系のうち、どれに対応するのかを研究する。 2階算術を使うことで、再帰理論からの多くの技術も利用できる。 実際、逆数学の結果の多くは、計算可能性解析の結果を反映している。 逆数学は、Harvey Friedman (1975, 1976)によってはじめて言及された。基本文献は(Simpson 2009)を参照。
328:現代数学の系譜 雑談
19/10/12 15:38:42.46 0oc9Ztsl.net
>>296
>好きに番号はつけて下さい。
はい
では、>>295の正則性公理の表記に合わせて、
∋関係の順序列の最小要素から順に、0または1を、
そして可付番なら、その後は自然数の順で番号付けをすることを
要求します
>>>293の各X[m]がいずれも空集合にならない事は理解できますか?
各X[m]の定義を、上記要求に合わせ
X[m]={(x1,x2,‥,xm) | x1=Ω, x[i]∋x[i+1]}
↓
X[m]={(x1,x2,‥,xm) | x1=Ω, x[i+1]∋x[i]}
と書き直して良いですよね?
正則性公理を前提として、m>=2でX[m]は空集合ではないですね
m=1で、x1=Φとしても、X[1]は、空集合にはならないですね
329:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/10/12 15:51:09 0oc9Ztsl.net
>>227
>・順序対 (x,y)と集合 {{x},{x,y}}との同一性。
追加
URLリンク(ja.wikipedia.org)
順序対
(抜粋)
目次
1 一般論
2 直観的な定義
3 集合論による順序対の定義
3.1 ウィーナーの定義
3.2 ハウスドルフの定義
3.3 クラトフスキーの定義
3.4 クワイン?ロッサーの定義
3.5 カントール?フレーゲの定義
3.6 モースの定義
4 圏論
一般論
数学の広範な分野において記号 (a, b) はざまざまな意味で用いられ、そうしたものの中で顕著な例はたとえば実数直線上の開区間を挙げることができるだろう。記号の意味は文脈に完全に依存しており、意味を取るためには文脈に注意しなければならない
直観的な定義
門書の類いにおいては、順序対の定義としてやや不正確だが直観的に
二つの対象 a, b に対し、順序対 (a, b) とは、対象 a, b をこの順番で指定する記法である[3]
というような形で与えるものがある。
このような「定義」は、記述的に与えられたにすぎず、また並べる「順番」というのも直観的に与えられたものでしかないから、厳密な意味での定義と呼ぶには不十分である。
もっともよく用いられるのがカシミール・クラトフスキーによるもの(後述)であり、その定義は1970年に出版されたブルバキ『集合論』の第二版で用いられた。順序対を直観的に導入する教科書でも、クラトフスキーによる厳密な定義に演習問題の中で言及するといったものも少なくない。
集合論による順序対の定義
クラトフスキーの定義
Kuratowski (1921) は今日的に広く受け入れられている順序対 (a, b) の定義[5][注 4]
(a,b)_K:={{a},{a,b}}}
を提唱した。注目すべきは、これが第一成分と第二成分が等しいときにも
p=(x,x)={{x},{x,x}}={{x},{x}}={{x}}
として有�
330:ネ定義になっていることである。 圏論 集合の圏における圏論的な直積 A × B は、第一成分が A に属し、第二成分が B に属する順序対全体の成す集合を表現する。この文脈では上で述べた順序対の特徴づけは、直積の普遍性と集合 X の元が(ある一元集合)1 から X への射と同一視されるという事実とからの帰結である。別の対象が同じ普遍性を持つかもしれないが、それらはすべて自然同型である。
331:132人目の素数さん
19/10/12 16:38:53.96 Vy+smElV.net
>>298
> X[m]={(x1,x2,‥,xm) | x1=Ω, x[i]∋x[i+1]}
> ↓
> X[m]={(x1,x2,‥,xm) | x1=Ω, x[i+1]∋x[i]}
> と書き直して良いですよね?
それはダメです。
上の命題は例えばm=3のとき
Ω=x1∋x2∋x3
を満たすx1, x2, x3が存在する事を主張してますが、
あなたが書き換えた命題は
Ω=x1∈x2∈x3
を満たすx1, x2, x3が存在する事を主張しています。
この二つは直ちに同値とは言えません。
番号の付け替えとは
Ω=x3∋x2∋x1
と付け替えるのは許されるという意味です。
332:現代数学の系譜 雑談
19/10/12 17:05:59.42 0oc9Ztsl.net
>>300
ちょっと意味がとれない
1)>>295より(坪井明人 筑波大)”正則性公理は、「空でない集合 x には ∈ に関して極小となる元 z ∈ x があること」です”は、いいですか?
2)「Ω=x1∋x2∋x3」に対し、
上記の”数理論理学II 坪井明人 筑波大”の「大小」の意味(”極小となる”などの表現)で
大小記号”>”を流用して表現しますと
”x1>x2>x3”と、通常の自然数の大小関係が逆転した表現になるということの理解は、良いですか?
3)確かに、別に表記は何でも言いとは言える。例えば
Ω = x1(=xァ) ∋ x2(=xィ) ∋ x3(=xゥ)
と、半角の小カナ ァ、ィ、ゥ でも何でも、名付けを変換しても同じです。数学の本質は不変です
4)ですが、自然数”1、2、3・・”の通常の大小関係を逆転し、錯覚させる表記は、”百害あって一利無し”と思いますよ!(というか、自分が何か錯覚していませんか?)
以上
333:132人目の素数さん
19/10/12 17:14:50.99 Vy+smElV.net
>>301
当面正則性の公理なんて関係ありません。
主張しようとしてるのは
>>275の主張
{n | ∃xn‥∈ x3∈ x2∈x1, Ω=x1}
には最大値が存在する。
です。
そこで背理法を使ってるんですよ。
焦らず一歩づついきましょう。
もしこの結論を否定するとそれから
X[m]={(x1,x2,‥,xm) | x1=Ω, x[i]∋x[i+1]}
が全てのmについて空集合とならない事が導かれるという主張なんです。
ここまででどこが納得いきませんか?
334:
19/10/12 17:25:03 Vy+smElV.net
もしかして>>275の主張がわかってないのかな?
もう少し丁寧に書けば
--- claim ---
S={ n | ∃(x1,x2,‥,xn), Ω=x1, x[i]∋x[i+1]}
には最大値が存在する。
---
です。
今これを背理法を用いて証明するためにSが最大値を持たないと仮定しています。
335:現代数学の系譜 雑談
19/10/12 17:49:56.43 0oc9Ztsl.net
>>302
(引用開始)
{n | ∃xn‥∈ x3∈ x2∈x1, Ω=x1}
には最大値が存在する。
(引用終り)
えーと、順序集合で、「半順序・全順序」意識していますか?
それ、∈関係で、全順序なのでしょ?
で、有限長さの全順序の列が存在する
最大値=最大の集合という意味なんのでしょうが
それ、ほとんど自明でしょ?
で、番号付けを通常と逆転させて、なにか錯覚しているだけと思いますけど
全順序の有限長さの列で、最大元と最小元とが存在することは、認めますよ
殆ど自明だから、証明は不要で、認めますよ
それより、番号付けを正常にしましょうよ
そういう、倒錯した番号付けはなしですよ
(参考)
URLリンク(ja.wikipedia.org)
順序集合
(抜粋)
定義
全順序集合、半順序集合、およびこれらよりさらに弱い概念である前順序集合の定義を述べる為にまず以下の性質を考える。ここで P は集合であり、「<=」を P 上で定義された二項関係とする。
「<=」が全順序律を満たさない場合、「a <= b」でも「b <= a」でもないケースがある。このようなケースにあるとき a と b は比較不能 (incomparable) であるという。
前順序・半順序・全順序
336:現代数学の系譜 雑談
19/10/12 17:52
337::05.22 ID:0oc9Ztsl.net
338:132人目の素数さん
19/10/12 17:56:43.26 Vy+smElV.net
>>304
>えーと、順序集合で、「半順序・全順序」意識していますか?
>それ、∈関係で、全順序なのでしょ?
いいえ?そんな事どこにも書いてないでしょ?
主張は
--- claim ---
S={ n | ∃(x1,x2,‥,xn), Ω=x1, x[i]∋x[i+1]}
には最大値が存在する。
---
です。
全順序もなにも仮定していないし、そんな事証明する気もありません。
主張してるのは上のSに最大値があるという事だけです。
339:132人目の素数さん
19/10/12 17:58:46.39 Vy+smElV.net
え?
全順序ってS⊂NでNは全順序集合って意味ですか?
もちろんNが整列順序集合である事は仮定してますよ?
340:132人目の素数さん
19/10/12 18:13:02.90 Vy+smElV.net
もしかしてxnのnが動いてるところのNとxnが動いてるF(Ω)を混同してるのかな?
Nは通常のωを想定して書いてます。
ホントは自然数と対応付くものならなんでもいいんですが混乱するのでN=ωにします。
それともう議論が発散するだけなので数列の順は降鎖でいきます。
もうそこで議論が発散するのは避けましょう。
とりあえず
--- claim(※) ---
S={ n | ∃(x1,x2,‥,xn), Ω=x1, x[i]∋x[i+1]}
には最大値が存在する。
---
このclaimにも名前をつけて(※)とします。
これを示すために(※)を否定して
--- Hypothesis (h) ---
S={ n | ∃(x1,x2,‥,xn), Ω=x1, x[i]∋x[i+1]}
には最大値が存在しない。
----
としましょう。
すると
X[m]:={(x1,x2,‥,xm) | x1=Ω, x[i]∋x[i+1]}‥‥(1)
とおくとき
--- ness. cond. (nc1) ---
全てのm∈Nに対してX(m)は空集合でない。
---
が導かれる。
ここまではいいでしょうか?
341:132人目の素数さん
19/10/12 18:14:44.09 l44Ha7GI.net
{{…}} は正則性公理に反するのでZF内には存在できません
342:現代数学の系譜 雑談
19/10/12 22:05:41.85 0oc9Ztsl.net
>>309
URLリンク(mickindex.)(URLがNGなので、キーワードでググれ(^^ )
ミック
再帰集合とSQL 2017/06/22
(抜粋)
色々な自然数の帰納的定義
ノイマン型
0 = Φ
1 = {0} = {Φ}
2 = {0, 1} = {Φ, {Φ}}
3 = {0, 1, 2} = {Φ, {Φ}, {Φ, {Φ}}}
・
ツェルメロ型
0 = Φ
1 ={Φ}
2 ={{Φ}}
3 ={{{Φ}}}
(引用終り)
で、ちょっと多く{Φ}に関する部分だけを取り出して、書くと
0 Φ
1 {Φ}
2 {Φ, {Φ}}
3 {Φ, {Φ}, {Φ, {Φ}}}
4 {Φ,{Φ},{Φ,{Φ}},{Φ,{Φ},{Φ,{Φ}}}}
5 {Φ,{Φ},{Φ,{Φ}},{Φ,{Φ},{Φ,{Φ}}},{Φ,{Φ},{Φ,{Φ}},{Φ,{Φ},{Φ,{Φ}}}}}
・
・
ここで、分出公理を使って、例えば「3」で、
{Φ, {Φ}, {Φ, {Φ}}}ですが
一番右{Φ}}}}だけを残して、
他の「 Φ, {Φ}, {Φ, 」を取り除く
すると、{{{Φ}}}となります。
これは、つまり、これはツェルメロ型の構成なのです
つまり
2 {Φ, {Φ}}→分出公理{{Φ}}
3 {Φ, {Φ}, {Φ, {Φ}}}→分出公理{[{Φ}}]
4 {Φ,{Φ},{Φ,{Φ}},{Φ,{Φ},{Φ,{Φ}}}}→分出公理[[{{Φ}}]]
5 {Φ,{Φ},{Φ,{Φ}},{Φ,{Φ},{Φ,{Φ}}},{Φ,{Φ},{Φ,{Φ}},{Φ,{Φ},{Φ,{Φ}}}}}→分出公理[[{{Φ}}]]
・
・
n {Φ,{Φ},{Φ,{Φ}},{Φ,{Φ},{Φ,{Φ}}},{Φ,{Φ},{Φ,{Φ}},{Φ,{Φ},{Φ,・・{Φ}}}}}・・}}→分出公理{{・・{{{{{Φ}}}}}・・}}
つまり、ノイマン型から、分出公理で一番右のΦのみを残し他のΦを省いた集合を作ると、それはツェルメロ型になる
これは、ノイマン型の有限、無限に関わらず可能。(ノイマン型から作る無限集合のNやZやQやRを扱えるのですから、当然ですが)
ノイマン型とツェルメロ型とは、全く無関係ではなく、ノイマン型の中にツェルメロ型を含んでいるのですよ
だから、ノイマン型の集合が存在すれば、ツェルメロ型の集合も存在もします
343:現代数学の系譜 雑談
19/10/12 22:08:33.70 0oc9Ztsl.net
>>309
>{{…}} は正則性公理に反するのでZF内には存在できません
(>>189より)
正則性公理は、無限降下列を禁止するが、その無限降下列の意味は、
”無限下降列である x∋x1∋x2∋・・・ ”は
底抜けの最小元を持たない無限単調減少列の意味です
ノイマンの自然数構成のような∈関係の無限上昇列を禁止するものではないのです
(>>159-160ご参照)
なお、>>310もご参照
344:第六天魔王
19/10/12 22:32:11.89 XYOM7riD.net
>>310
>ノイマン型から、分出公理で一番右のΦのみを残し他のΦを省いた集合を作ると、それはツェルメロ型になる
ωの一番右のΦってなんだよ?w
有りもしないものが見えるとか、
馬鹿はとうとう認知症になったかw
>>311
∈関係の無限上昇列から、無限下降列は作れないことが
馬鹿にはどうしても理解できないらしい
考えない奴には数学なんて
345:死んでも理解できないから諦めろw
346:現代数学の系譜 雑談
19/10/12 22:33:16.85 0oc9Ztsl.net
>>293
(引用開始)
Ω=x1∋x2∋‥‥∋xm
X[m]={(x1,x2,‥,xm) | x1=Ω, x[i]∋x[i+1]}
(引用終り)
?
xmをいくらでも小さく取れるということですか?
それこそ、正則性公理で禁止されていることですよ
つまり、ZFCで空集合Φに、ノイマン型で後者関数を使って、自然数を作る
最小値(集合) 0=Φで、これが最小値(集合)
ノイマン型で
0∈1∈2∈・・∈n・・
となって
最小値(集合) 0=Φより、小さい値(集合)は存在しません!
一方、大きな値(集合)は、可能です
無限大も可能です(もちろんアレフ1もアレフ2も可能です)
なお、正則性公理の規定によって、∈関係において、∈は等号の意味は含みません
つまり、「X∈X」は禁止されていますので、「・・X∈X∈X∈X」という等号型の無限ループは許されていません
さて、そろそろ宜しいでしょうか?
私は、(>>257)『おっさんずラブ』ならぬ、おっさんずゼミ(゜ロ゜;
(どこのだれとも知れぬ”名無しさん”=おっさんたちと、ゼミやる気ないです(^^;
大学教員だとかいうなら、話は別ですがね)
そんな趣味ないので、あしからずご了承ください w(^^;
(たまに冷やかしで書くかも知れませんが、そのときはよろしく)
347:現代数学の系譜 雑談
19/10/12 22:38:10.18 0oc9Ztsl.net
>>312
>ωの一番右のΦってなんだよ?w
その質問は、哀れな素人さんの無限に関する質問に類似
>有りもしないものが見えるとか、
現代数学の概念は、抽象的なものが多いよ。知らないみたいだね(゜ロ゜;
348:132人目の素数さん
19/10/12 22:50:41.54 Vy+smElV.net
>>313
いえ違いますよ。
とりあえず>>308で書いた事が認められないという立場なのですね?
では>>308のどの主張が認められないのか指摘して下さい。
349:第六天魔王
19/10/12 23:01:09.90 XYOM7riD.net
>>314
馬鹿は、最大の自然数が存在すると思ってるのか?w
「最大の自然数が存在しない」という点では、
数学関係者と安達の間に意見の相違はない
相違があるとすれば
「自然数全体の集合が存在するか否か」
無限公理においては、最大の自然数が存在しないにも関わらず
自然数全体の集合は存在する
むしろ馬鹿の「最後の元が存在しないなら集合になり得ない」
という発想が、安達とそっくりw
数学はそういう馬鹿な考え方は捨て去ったw
350:132人目の素数さん
19/10/12 23:03:28.11 Vy+smElV.net
>>313
いえ違いますよ。
とりあえず>>308で書いた事が認められないという立場なのですね?
では>>308のどの主張が認められないのか指摘して下さい。
>>308の主張はたった一つです。
hypothesis(h)の元にness. cond. 1が導かれる。
という主張です。
証明にギャップがあって認められないのはどこですか。
指摘して下さい。
351:第六天魔王
19/10/12 23:06:04.48 XYOM7riD.net
無限公理によるωは、ノイマンのsuc(a)=a∪{a}の超限回繰り返しではない
なぜなら
ω=suc(a)=a∪{a}となるようなa(つまりωの一番右の元!)
が存在しないから
馬鹿は「ω=suc(a)となるaがある!」と思い込んでるらしいが大間違いだw
352:
19/10/13 00:01:32 m8dyiQfg.net
>>313
> xmをいくらでも小さく取れるということですか?
やっぱりF(Ω)とNを混同してませんか?
そもそも>>308の主張では一切F(Ω)に順序など入れてませんよね?
xmはF(Ω)の元ですよ?
順序集合ですらないのにいくらでも小さくとれるも何もないでしょ?
>>308のclaimのSの最大値といってるSを含んでいるNの持っている整列順序ですよ?
SはNの部分集合なのでNの順序を制限したものを持ってます。
xmをいくらでも小さく取れるなんて主張はxmの入っているF(Ω)に順序が入ってないと言えませんが、>>308のどこにもF(Ω)の順序を定義などしてませんよ?
そして>>308の主張のどこをどう読んでもxmに最小値があると読める部分はないはずですが?
>>308の議論ではF(Ω)とNの部分集合が出てきてますけど区別できていますか?
353:132人目の素数さん
19/10/13 02:46:04.17 lOWuZmUx.net
A={{}, {{}}, {{}, {{}}},...}
と
B={{…}}
の決定的な
354:違いは、A∌∞、B∋∞ スレ主は∞∈Nの間違いから未だに抜け出せないようだ
355:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/10/13 07:09:07 sXrN/kYa.net
(>>313より)
おっさんずゼミ=「どこのだれとも知れぬ”名無しさん”のおっさんたちとの、ゼミ」やる気ないです
但し、好きなときに好きなことを書かせてもらいます(^^
ちょっと思いついたので、下記をば
>>314
>ωの一番右のΦってなんだよ?w
じゃ、
ノイマン後者関数(左右入れ替え);suc(a) := {a}∪a(= a∪{a})
とでもしておけば良い
ωの一番左のΦだよ
等号(=)に一番近いやつ
これは動かないから
探さなくて良いぜ(゜ロ゜;
356:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/10/13 07:11:08 sXrN/kYa.net
>>318
>無限公理によるωは、ノイマンのsuc(a)=a∪{a}の超限回繰り返しではない
>なぜなら
>ω=suc(a)=a∪{a}となるようなa(つまりωの一番右の元!)
>が存在しないから
そう! その指摘は正しいね
ωは、下記の通り、”任意の自然数よりも大きい最小の超限順序数 ω”で、「 0 でも後続順序数でもない順序数」だ
「順序位相(英語版)に関する極限点」だから、極限を用いて考えれば良い
有限順序数のn→∞の極限として、ωを理解するのが分り易い
それは、ツェルメロ構成に同じだ
ノイマン後者関数の定義から、極限でωがでる
同様に、
ツェルメロ後者関数の定義から、極限でωがでる。そして、またωの後者が始まる。そう理解するのが、現代数学の正しい理解だね(^^
(参考>>164もご参照)
URLリンク(ja.wikipedia.org)
極限順序数
(抜粋)
集合論および順序論(英語版)における極限順序数(きょくげんじゅんじょすう、英: limit ordinal)は 0 でも後続順序数でもない順序数を言う。
任意の自然数よりも大きい最小の超限順序数 ω は、それよりも小さい任意の順序数(つまり自然数)n が常にそれよりも大きい別の自然数(なかんずく n + 1)を持つから、極限順序数である。
順序数に関するフォンノイマンの定義(英語版)を用いれば、任意の順序数はそれより小さい順序数全体の成す整列集合として与えられる。
(全ての有限)順序数からなる空でない集合の合併は最大元を持たないから、常に極限順序数である。
・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。
URLリンク(ja.wikipedia.org)
集積点/極限点
(抜粋)
定義
位相空間 X の部分集合 S に対し、X の点 x が S の集積点であるとは、x を含む任意の開集合が少なくとも一つの x と異なる S の点を含むことを指す
この条件は T1-空間においては、x の任意の近傍が S の点を無限に含むという条件に同値である
URLリンク(ja.wikipedia.org)
T1空間
(抜粋)
X が T1-空間であるとは、X の任意の相異なる二点が分離できるときに言う
(引用終り)
357:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/10/13 07:22:41 sXrN/kYa.net
>>322
参考追加
URLリンク(en.wikipedia.org)
Order theory
(抜粋)
Order theory is a branch of mathematics which investigates the intuitive notion of order using binary relations.
It provides a formal framework for describing statements such as "this is less than that" or "this precedes that".
This article introduces the field and provides basic definitions.
A list of order-theoretic terms can be found in the order theory glossary.
Contents
1 Background and motivation
2 Basic definitions
2.1 Partially ordered sets
2.2 Visualizing a poset
2.3 Special elements within an order
2.4 Duality
2.5 Constructing new orders
3 Functions between orders
4 Special types of orders
5 Subsets of ordered sets
6 Related mathematical areas
6.1 Universal algebra
6.2 Topology
6.3 Category theory
7 History
8 See also
つづく
358:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/10/13 07:23:50 sXrN/kYa.net
>>323
つづき
Category theory
The visualization of orders with Hasse diagrams has a straightforward generalization: instead of displaying lesser elements below greater ones, the direction of the order can also be depicted by giving directions to the edges of a graph.
In this way, each order is seen to be equivalent to a directed acyclic graph, where the nodes are the elements of the poset and there is a directed path from a to b if and only if a ? b. Dropping the requirement of being acyclic, one can also obtain all preorders.
When equipped with all transitive edges, these graphs in turn are just special categories, where elements are objects and each set of morphisms between two elements is at most singleton. Functions between orders become functors between categories. Many ideas of order theory are just concepts of category theory in small. For example, an infimum is just a categorical product.
More generally, one can capture infima and suprema under the abstract notion of a categorical limit (or colimit, respectively). Another place where categorical ideas occur is the concept of a (monotone) Galois connection, which is just the same as a pair of adjoint functors.
But category theory also has its impact on order theory on a larger scale. Classes of posets with appropriate functions as discussed above form interesting categories. Often one can also state constructions of orders, like the product order, in terms of categories.
Further insights result when categories of orders are found categorically equivalent to other categories, for example of topological spaces. This line of research leads to various representation theorems, often collected under the label of Stone duality.
つづく
359:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/10/13 07:24:42 sXrN/kYa.net
>>324
つづき
History
As explained before, orders are ubiquitous in mathematics. However, earliest explicit mentionings of partial orders are probably to be found not before the 19th century.
In this context the works of George Boole are of great importance. Moreover, works of Charles Sanders Peirce, Richard Dedekind, and Ernst Schroder also consider concepts of order theory.
Certainly, there are others to be named in this context and surely there exists more detailed material on the history of order theory.
The term poset as an abbreviation for partially ordered set was coined by Garrett Birkhoff in the second edition of his influential book Lattice Theory.[2][3]
(引用終り)
以上
360:第六天魔王
19/10/13 08:21:17.35 2pwdGOo0.net
>>322
>>無限公理によるωは、ノイマンのsuc(a)=a∪{a}の超限回繰り返しではない
>>なぜなら
>>ω=suc(a)=a∪{a}となるようなa(つまりωの一番右の元!)
>>が存在しないから
>そう! その指摘は正しいね
今頃そんな自明なこと言
361:ってんのかw >それは、ツェルメロ構成に同じだ 馬鹿は助詞も正しく使えないw 誤 ツェルメロ構成「に」同じ 正 ツェルメロ構成「も」同じ 大阪の小学校では国語もロクに教えないのか? だからこんな馬鹿が生まれるんだな 東京ではこんな間違った日本語書く馬鹿はいないぞw >ノイマン後者関数の定義から、極限でωがでる >同様に、 >ツェルメロ後者関数の定義から、極限でωがでる。 馬鹿は、極限の取り方を知らないw ω=∪nだぞ ツェルメロ構成でも同様、と言い切ったなら ω’=∪n’ だから ω’={{},{{}},{{{}}},{{{{}}}},…} で ω’∋n’ だな 馬鹿、極限発言で完全自爆wwwwwww
362:132人目の素数さん
19/10/13 08:46:17.59 m8dyiQfg.net
とりあえず、私が得てる結論だけ書きます。
prop
(1) 集合XにおいてF(X)が
x∈F(X)⇔∃(x1,‥xn) x=xn, X=x1, x1∋x2∋‥‥∋xn
を満たすものが構成できる。
(2) F(X)の任意の元が有限集合⇔rank(X)が有限
(3) F(X)の任意の元がsingleton⇔XがZermelo natural number
ホントは(1)が難しいのですがそれさえ認めてしまえば(3)くらいは理解してもらえるかと思ったけど、どうもそのレベルにないようですね。
363:Mara Papiyas
19/10/13 16:53:53.36 2pwdGOo0.net
>>327
馬鹿は反論不能で沈黙したな
当然だ あいつは論理的思考ができないからな
本能行動以外何もないw
URLリンク(ja.wikipedia.org)
364:132人目の素数さん
19/10/13 17:05:12.50 lOWuZmUx.net
スレ主ってなんで数学なんかに興味持ったのだろう?
素養の欠片も無いのに
365:Mara Papiyas ◆y7fKJ8VsjM
19/10/13 17:17:50 2pwdGOo0.net
>>329
中二病でしょうな
URLリンク(ja.wikipedia.org)
”中二病(ちゅうにびょう)とは、
「中学2年生頃の思春期に見られる、背伸びしがちな言動」
を自虐する語。
転じて、思春期にありがちな自己愛に満ちた空想や嗜好などを
揶揄したネットスラング。
「病」という表現を含むが、実際に治療の必要とされる
医学的な意味での病気、または精神疾患とは無関係である。”
典型的な「症例」
・洋楽を聴き始める。
・旨くもないコーヒーを飲み始める。
・売れたバンドを「売れる前から知っている」とムキになる。
・やればできると思っている。
・母親に対して激昂して「プライバシーを尊重してくれ」などと言い出す。
・社会の勉強をある程度して、歴史に詳しくなると
「アメリカって汚いよな」と急に言い出す。
洋楽は洋書、バンドは数学者に置き換え可能w
しかし一番始末が悪いのは
「(できもせんのに)やればできると思ってる」
ってところだな
これいい大人、というか老い先短い爺ィにも見られる
「根拠のない自信家」というのは障害といってもいいなw
366:Mara Papiyas ◆y7fKJ8VsjM
19/10/13 17:21:21 2pwdGOo0.net
ちなみに
・BABYMETALを聴き始める
・BABYMETALを「さくら学院重音部の頃から知っている!」とわざわざ云う
というのは、センスがいい証拠( ̄ー ̄)←完全な中二病w
367:Mara Papiyas
19/10/13 17:38:41.46 2pwdGOo0.net
大二病
URLリンク(ja.wikipedia.org)
”大二病というのは就職活動において表れる大学生の批判すべき特徴
こ
368:の特徴というのは、自身の持っている能力を高めに設定しているものの、 企業にそれよりも低い評価をされたならば、その評価を受け入れずに 逃げようとするということである。 厳しい評価が下されたならば、まだ本気を出していないや、 自分の実力に気づかれていないや、あんな企業は入らないほうがマシ などという言い訳をして評価を受け入れないということなどである。” そもそも就職活動する奴は無能 会社の仕事は大抵クソ 一流大卒のエリートとかいったって その実態は労働者の稼ぎを毟り取るだけ 正真正銘の極悪人であって 自慢にもなんにもならない
369:Mara Papiyas
19/10/13 17:44:47.60 2pwdGOo0.net
デビッド・グレーバーの”Bullshit Jobs”では
次に挙げる5つの仕事は全く無意味であると
こき下ろしている
① ”Flunkies(太鼓持ち)”
受付係、秘書、ドアマンなど、自分が重要な人物だと思わせるために存在する仕事
② ”Goons(用心棒)”
ロビイスト、企業弁護士、テレマーケター、広報など、雇い主のために相手を攻撃する仕事
③ “Duct Tapers(落穂拾い)”
出来の悪いプログラムの修正など、そもそもあってはならない問題の手直しをする仕事
④ “Box Tickers(社内官僚)”
パフォーマンスマネジャー、社内広報誌のジャーナリスト、休暇のコーディネーターなど、内向きの仕事
⑤ ”Task Makers(仕事製造人)”
中間管理職やリーダーシップの専門家など、無駄な業務を生み出す仕事
ここの馬鹿の仕事は①~⑤のどれにあたるかは知らんが
確実にその中に入ってるだろう
なぜ、分かるかって?同類だからさw
370:ID:1lEWVa2s
19/10/13 17:46:21.51 BCKVKYa1.net
>>333
これ無くなったら終わりだぞ
わからないのかキチガイには
俺もキチガイだから仲間入りだな
考えとけよ
371:ID:1lEWVa2s
19/10/13 17:47:06.68 BCKVKYa1.net
>>333
何が必要かは宿題だ
何故この仕事が必要かは宿題だ
考えとけよ馬鹿キチガイ
372:ID:1lEWVa2s
19/10/13 17:50:01.86 BCKVKYa1.net
>>333
自分で今の言った自分を反面教師にしとけ
煙草吸ってくる
373:ID:1lEWVa2s
19/10/13 17:51:20.34 BCKVKYa1.net
年下のハゲネズミでいい
374:Mara Papiyas
19/10/13 17:53:53.04 2pwdGOo0.net
>>334
オレは会社人間じゃないし
資本主義なんてクソだとおもってるから
終わるならさっさと終わってほしいもんだw
>俺もキチガイだから仲間入りだな
ここでいう「キチガイ」とは
>>333のBullshit Jobsに従事する者
という意味か?
なら、いい加減自分の仕事は重要だと自分を騙すのはやめようぜ
こんなことこそ直感でわかることだろ
本当に役に立つ仕事をしてる人の給料は安くて
どうでもいい仕事をしてる奴の給料は高い
世の中は狂ってるんだよ
革命で首切られる側になりたくなければ
自分の身の振り方を考えるこったな
375:ID:1lEWVa2s
19/10/13 17:55:39.83 BCKVKYa1.net
>>338
フェルマー最終定理について
のスレ主だ
そこの今書いたことみろ。
意味がわかるぞ。
まあいい、ここにも書くから今から拾ってくる。
376:ID:1lEWVa2s
19/10/13 17:56:08.18 BCKVKYa1.net
>>338
時給上げすぎると終わるぞ
気付かないのか
緊張感とライ�
377:u感が時給の値段の高さに吸い取られるんだよ。 意味わかるか!?!? 時給800円の仕事場は永遠を誓ってくれるぞ。優しいから。
378:132人目の素数さん
19/10/13 17:56:48.77 V6/d9xmP.net
>>335
なせか
人間だもの
相田みつを
かな(^_^)
379:ID:1lEWVa2s
19/10/13 17:57:05.02 BCKVKYa1.net
>>340
涙最後にだして読んどけ。
380:ID:1lEWVa2s
19/10/13 17:59:55.87 BCKVKYa1.net
>>338
名古屋は中小企業で飲食店と仲良く金銭上手く友達のように回してるの知らないのか。
大企業には大企業の仕事がある。
圏論の勉強しとけ。
381:132人目の素数さん
19/10/13 18:00:15.06 V6/d9xmP.net
>>326
おサルの極限は、一種類のみか?
(゜ロ゜;
382:Mara Papiyas
19/10/13 18:00:31.01 2pwdGOo0.net
>>340
そもそもカネというのが、権力者が他の人間を支配するための道具
経済学というのは悪のシステムに関する学問なんだな
383:Mara Papiyas
19/10/13 18:03:30.61 2pwdGOo0.net
>>343
カネという「システム」が必要だという思い込みから脱することだ
君がどんな仕事してるか知らんが、
一度自分を見つめなおしたほうがいい
384:ID:1lEWVa2s
19/10/13 18:04:17.24 BCKVKYa1.net
>>345
消費税から奪った金はおまいらがまもりたいものに回されるから安心しとけ
5*1.25=6.25-5=1.25兆円なのに8000億円とみつもったニュースで4500億円わいろにまわされるのは如何なものかと思うが
消費税1.05-1.08の差の事なかれ
385:ID:1lEWVa2s
19/10/13 18:06:11.92 BCKVKYa1.net
>>346
AIか機械君か人の命か扱われることに扱われる自然の命どれを救いたい
扱われることに扱われる自然の命を私は守りたい
金が無くなったら殺される概念があるんだぞ
386:132人目の素数さん
19/10/13 18:07:23.51 V6/d9xmP.net
>>346
サイコバスおサルの屁理屈か
まあ、頑張ってみな
387:Mara Papiyas
19/10/13 18:07:53.62 2pwdGOo0.net
>>347
オレが守りたいのはオレ自身だけだw
カネだけ見てると、肝心なものが見えなくなるぞ
誰が得をし誰が損をしてるか 見ることだ
無駄な仕事で儲けてる奴は悪党なんだよ
388:ID:1lEWVa2s
19/10/13 18:08:00.27 BCKVKYa1.net
>>348
今一切概念の話は禁止な
セクハラ行為だから
パンちらみたいなもん
セクハラ行為禁止
389:ID:1lEWVa2s
19/10/13 18:10:28.52 BCKVKYa1.net
>>350
これらの文章を読むには後6年はやかったな。
今から6年頑張って生きろ
お前がお前を守りたいといったな
代格者の特徴だ。gantzの黒い玉のす~ハーする奴の事だ代格者とは。
390:Mara Papiyas
19/10/13 18:10:47.67 2pwdGOo0.net
>>348
貧乏人はカネというシステムで殺される
必要な労働をしてくれる貧乏人がいなくなったら金持ちは飢えて死ぬぞw
カネなんかいくらあっても無意味
カネで買えるものがなくなるんだからなw
391:Mara Papiyas
19/10/13 18:12:34.41 2pwdGOo0.net
>>351
じゃ、君の仕事の話をしよう
いったい何をやってるんだい?
ここの馬鹿の似非数学よりは
よっぽど面白いと思うぞ
392:ID:1lEWVa2s
19/10/13 18:13:18.99 BCKVKYa1.net
>>353
新聞読んで代格者のトランプ大統領がこの世をどうやったら守れるか
内緒にしている裏の仕組みを新聞に書いてある程度の即ち新聞だけでトランプ大統領と安倍の仕事を追って研究しなはれ
393:ID:1lEWVa2s
19/10/13 18:15:51.67 BCKVKYa1.net
>>354
教えてやろう障害年金障害者手帳二級でもらいながら
週二日間B型作業所で働いている
時給180円
そろそろ週三日間になる予定
精神病院には三�
394:x入院し。 得て四カ月でそれぞれ退院し 一度は連続で一ヶ月隔離室もあった。
395:Mara Papiyas
19/10/13 18:15:58.42 2pwdGOo0.net
>>352
>”代格者”
聞いたことない言葉だな
君はどうも統合失調症らしいな
いや、別に侮るつもりなんかないぞ
病気だからな
ここのリコウぶった馬鹿の書き込みに比べたら全然マシだ
396:ID:1lEWVa2s
19/10/13 18:16:54.35 BCKVKYa1.net
>>357
その通り
病名統合失調症です
397:ID:1lEWVa2s
19/10/13 18:20:31.36 BCKVKYa1.net
4500億円イートインがどうので騙しとったのは許せない
398:Mara Papiyas
19/10/13 18:20:39.78 2pwdGOo0.net
>>356
そうか
>>333の”Bullshit Jobs”ってのは
あんたの仕事のことじゃないよ
東大とか京大とかいう大学を卒業した連中が
一流企業やらなんやらでやらかしてる仕事
のことをいってるつもりだ
要するに学歴が有能の証だという信仰はデタラメってことさ
そりゃある種の能力には秀でてるかもしれんが
それは世の中の役に立つこととは無関係ってことさ
399:ID:1lEWVa2s
19/10/13 18:21:24.32 BCKVKYa1.net
8000億円じゃなく1.25兆円が消費税5%から8%にした贈幅なのに
400:132人目の素数さん
19/10/13 18:21:45.47 V6/d9xmP.net
>>357
おサルは、面白いな
頑張れよ(゜ロ゜;
401:132人目の素数さん
19/10/13 18:21:46.90 V6/d9xmP.net
>>357
おサルは、面白いな
頑張れよ(゜ロ゜;
402:ID:1lEWVa2s
19/10/13 18:24:24.81 BCKVKYa1.net
>>360
東大京大も頭弱くて金のなる道具使いの無能な頭で金のなる木にしがみつかなきゃいけてけないの知らないのか。
大企業は知ってて
株主は宇宙が壊れないように馬鹿の名高いだけの奴らすら守ってんだよ
東大京大と孫正義は別物。
403:Mara Papiyas
19/10/13 18:24:47.02 2pwdGOo0.net
>>359
そもそもカネのあるヤツから税金をとらない時点でオカシイ
しかしそれは税制の問題じゃない
そもそもカネというシステムが権力者の都合で出来たものだ
というのが一番の大問題なんだ
議会で変革するとかいうのは無理
根本的にブッ壊すしかない
404:Mara Papiyas
19/10/13 18:26:38.97 2pwdGOo0.net
>>364
>金のなる木にしがみつかなきゃいけてけない
それはカネにとらわれてる証拠
カネは物理法則じゃないw
405:ID:1lEWVa2s
19/10/13 18:26:52.35 BCKVKYa1.net
役に立たない名高い馬鹿は大企業の底辺で働くんだよ
孫正義とかマークザッカーバーグとかひろゆきが支持して
国はまわっていく
嘘は言っていない
すぐアメリカのガキはLiesって反論するから嘘は言わなかった。
406:ID:1lEWVa2s
19/10/13 18:27:55.00 BCKVKYa1.net
>>366
ごもっとも
ルネトムのカタストロフィの本をアマゾンで注文して読むように
407:Mara Papiyas
19/10/13 18:31:38.39 2pwdGOo0.net
>>368
>ルネ・トムのカタストロフィの本
昔読んだが、現実の問題にはそれほど役には立たなかったな
408:ID:1lEWVa2s
19/10/13 18:31:51.07 BCKVKYa1.net
>>365
因みに増税は最後の切り札で上げていくと係数率が下がってハイパーインフレーションを起こす。
それまた、格差が生まれないように%の低い間の増税なら格差が生まれにくく
つまり生活が人々の間で逆転しない。
ただ、貧乏人の100円は価値が高いことは本人にとって覚えておくこと。
409:ID:1lEWVa2s
19/10/13 18:33:42.49 BCKVKYa1.net
>>370
日本もアメリカも寿命がきていると思え
増税したということは最後の切り札を使ったしぬきのさくせんというわけだ
ルネトムのカタストロフィよんだのはえらい!!!!
410:ID:1lEWVa2s
19/10/13 18:36:32.94 BCKVKYa1.net
金でゾイドビーストライガ~買える
面白いだろ!!??金の仕組みって価値って。
411:ID:1lEWVa2s
19/10/13 18:38:13.36 BCKVKYa1.net
スマホですよ、ずっと
聞きたかったんでしょ
412:ID:1lEWVa2s
19/10/13 18:41:01.13 BCKVKYa1.net
金のある人は言うでしょう
どうぞ月給7万円になるまでとってってくださいって。
但し経済が壊れて女の子の処女の数々を守れなくていいならって
嘘は言っていない。
がんばれ文章ちゃん。
413:ID:1lEWVa2s
19/10/13 18:42:42.52 BCKVKYa1.net
>>374
だからトランプ大統領の新聞だけの記事を読み続けとけ
代格者だから
何が守りたかったかあやふやにわかる。
414:ID:1lEWVa2s
19/10/13 18:43:11.81 BCKVKYa1.net
>>375
安倍ちゃんも含めてな
415:ID:1lEWVa2s
19/10/13 18:44:54.17 BCKVKYa1.net
俺がやってた荷揚げ屋のハンドキャリー旧A.C.K.の親分は英語も数学も達者だったのに仕事に荷揚げ屋専門にしたんだぞ
代格者だからな。
416:132人目の素数さん
19/10/13 18:46:47.65 86NJxxov.net
時間軸がコンフリクトしたか
流暢なのに支離滅裂
支離滅裂なのに流暢
まるで、白昼夢かつ、
思考速度は無限大で、空回り
優秀すぎるのかも知れない。
417:ID:1lEWVa2s
19/10/13 18:55:08.54 BCKVKYa1.net
>>377
大工の友達を守りたかったはず
良いと思う心と命と魂と精神が。
418:ID:1lEWVa2s
19/10/13 18:56:06.39 BCKVKYa1.net
後は内緒
419:ID:1lEWVa2s
19/10/13 18:56:54.84 BCKVKYa1.net
煙草吸ってくる
420:ID:1lEWVa2s
19/10/13 19:17:45.96 fp18P2o5.net
死ぬ死ぬ詐欺だけど
体ボロボロで今日死ぬかもしれない。
421:
19/10/13 19:27:43.84 bzmhiEIb.net
>>382
体ボロボロといっても私ほどは酷くないでしょう
どんな自覚症状がありますか?
422:ID:1lEWVa2s
19/10/13 19:29:39.86 87Wfcy4Z.net
>>383
顔骸骨になるまで神経壊れた
その時隔離室一ヶ月連続でヒルナミン注射打って貰ってなおしてもらった
423:ID:1lEWVa2s
19/10/13 19:31:05.75 87Wfcy4Z.net
あと他にもあるが内緒
424:ID:1lEWVa2s
19/10/13 19:32:28.05 87Wfcy4Z.net
あと隔離室一ヶ月のとき赤と青のカプセル飲まされそうだった
425:ID:1lEWVa2s
19/10/13 19:32:47.78 87Wfcy4Z.net
あれは致死率1位で死ぬから拒否した
426:ID:1lEWVa2s
19/10/13 19:34:21.27 87Wfcy4Z.net
>>386
調べても出てこないよ
裏の薬だから
427:ID:1lEWVa2s
19/10/13 19:36:54.04 87Wfcy4Z.net
多分今名前聞いても精神医学法上教えてくれない。
担当医は高沢院長
また、もう一人杉浦副院長
グリザリルは少しのんだが
副作用で死ぬとこだったからやめてもらった。
高沢院長が杉浦副院長のヒルナミン無くしたことに怒って高沢院長も処方再開してくれた
グリザリルは後で副作用の報告がでるからやめときな
428:ID:1lEWVa2s
19/10/13 19:38:11.62 87Wfcy4Z.net
高沢院長は薬には詳しくない
杉浦副院長が詳しい
それを高沢院長は認めなかったから杉浦副院長が裏で怒ったはず
429:ID:1lEWVa2s
19/10/13 19:40:29.36 87Wfcy4Z.net
注射で治るのは知ってたけど薬拒否した場合だから
それまで飲むの我慢して
隔離室一ヶ月の内の後半わざとおさえられるかたちの場面つくって
わざと注射打って貰うようにした
430:ID:1lEWVa2s
19/10/13 19:41:49.03 87Wfcy4Z.net
首押さえられたとき強すぎだった
死ぬかと思った
注射打っていいから首おさえるのやめて死ぬ死ぬって言って
打って貰った
431:
19/10/13 19:42:12.70 bzmhiEIb.net
>>384
おお、その手の薬の愛好者ですか!私とおんなじではないですか
私もD-2遮断薬を愛好しており、ゆるいものではドグマチール、最近は出世してセレネース等ですねえ
>赤と青のカプセル飲まされそうだった
うーん、それは神薬ベゲタミンですか?たしかにあの赤玉はよく効きますよ…
432:ID:1lEWVa2s
19/10/13 19:46:30.97 87Wfcy4Z.net
>>393
違う。赤と青の左右の色のタウカプセル。
飲んだら即死ぬ
裏の薬用意
433:されたから名前はない。 多分二度と教えてくれない。 あの時精神医学法上の特例がでてたはず。 かなりひどかったから。 あなたもですか。代格者。
434:ID:1lEWVa2s
19/10/13 19:48:10.41 87Wfcy4Z.net
体が動かなかった
ご飯食べさせて貰ってた。
あの時職員の体も壊れてた。
テレビの色が変わった日。
435:
19/10/13 19:55:31 bzmhiEIb.net
>>389
クロザリルが正解ですねえ
まあ本来的な精神分裂症は不定愁訴的な症状は本筋ではないので、あなたの受けた投薬はちょっと変ですね…
436:
19/10/13 19:57:42 bzmhiEIb.net
>>394
薬に裏表はないですよ、でないと保険適用されないでしょう?
保険でまかなえたのなら、それはみんなあなたのいうところの「表の薬」でしょうね
薬代でウン万円はらったのなら、あなたのいうところの「裏の薬」もあるのかもしれませんが
437:
19/10/13 20:00:52 bzmhiEIb.net
>>389
クロザリルで副作用とか、あなた弱い薬でそんな弱音を吐いちゃいけませんよ
もっと強い薬があって、私の知るところでは今飲んでるセレネースが最強ですね、これより強い薬は私もしらない
ああ一つあったね、神薬「ベゲタミンA」ですね
438:Mara Papiyas ◆y7fKJ8VsjM
19/10/13 20:02:06 2pwdGOo0.net
>>393
>ベゲタミン
ああ、あの悪名高い・・・
たしかクロルプロマジン・フェノバルビタール・プロメタジンを合わせた薬
今時バルビタール系の睡眠薬とか処方しないよ
ベンゾジアゼピン系だって長期服用はヤバイといわれてるのに
統合失調症の薬だと、最近は
エビリファイとかレキサルティがいい
って聞きますけどね
439:
19/10/13 20:07:52.65 bzmhiEIb.net
>>399
エビリファイは確かに好評ですね、私も一時期、その回春作用を期待してお願いしていましたが、あまりそんな作用はありませんでした。
レキサルティは、弱すぎて私に処方されたことはありませんでした。
URLリンク(ameblo.jp)
>今時バルビタール系の睡眠薬とか処方しないよ
たしかにベゲタミンは製造中止になり、私もベゲタミン難民でして、未だにいろいろ睡眠剤を彷徨している最中です、ベルソムラなんて弱すぎて全然だめなんですねえ…
440:Mara Papiyas
19/10/13 20:08:16.99 2pwdGOo0.net
ドグマチールは、一時期、睡眠薬(マイスリー)のせいで
体調が悪かったときに処方されて飲んでたな
いまは睡眠薬もドグマチールも飲んでないけど
441:Mara Papiyas
19/10/13 20:11:19.54 2pwdGOo0.net
>>400
ベゲタミンに慣れちゃった人にベルソムラは効かないよ
ま、作用の仕方が違うんですがね
私も一時期マイスリーからベルソムラに変えられたけど
全然効かなかったですね
442:Mara Papiyas
19/10/13 20:16:46.48 2pwdGOo0.net
芥川龍之介が自殺に使ったといわれるヴェロナールはバルビタール
マリリン・モンローの自殺(?)の薬もこれ
(?)をつけたのは、他殺説があるから
アメリカは何やらかすかわからんからね
443:Mara Papiyas
19/10/13 20:20:59.51 2pwdGOo0.net
精神病トークというか向精神薬トークの合間に
馬鹿がなんか書いてたみたいだけどつまんないから黙殺しちまったw
ホントあいつは馬鹿だしつまんないし生きてる価値ゼロだなw
444:ID:1lEWVa2s
19/10/13 20:22:46.20 kh16agAY.net
>>404
そういうこと言わない
445:
19/10/13 20:26:19.88 bzmhiEIb.net
>>399
>たしかクロルプロマジン・フェノバルビタール・プロメタジンを合わせた薬
この配合は神業だと、ここでも称えられていますね
URLリンク(ameblo.jp)
>あれを最初に作った人は天才である。
>2つの傑出している薬、コントミン、フェノバールが含まれていることが重要である。
>抗精神病薬、抗てんかん薬、抗パーキンソ
446:ン薬のトリオが入っており、完結している。
447:Mara Papiyas
19/10/13 20:47:11.89 2pwdGOo0.net
>>405
一応、そういうキャラ設定だからw
>>406
神業なのか悪魔の業なのかは分からんけど
そういうこと魔王のオレがいっちゃダメかw
448:132人目の素数さん
19/10/13 21:57:48.60 V6/d9xmP.net
>>406
C++さん、どうもガロアスレのスレ主です
C++さん、薬処方されているほうでしたか
私は、薬の名前サッバリですわ(^_^)
サル石も同じか
まあ、しかしサイコバスの治療薬は、ないからな~!(゜ロ゜;
449:Mara Papiyas
19/10/13 22:31:06.19 2pwdGOo0.net
>>408
で、結局、ツェルメロの構成法でのωは
馬鹿のやり方では実現不能、ってのは
理解したのかい?w
知障の治療薬もないからな( ̄ー ̄)
450:132人目の素数さん
19/10/13 22:42:34.18 lOWuZmUx.net
{{…}} は正則性公理に反するのでダメですね
結局 ∞∈N を違う言い方で言ってるだけ
超限順序数とか聞きかじりで理解してないんでしょう
451:132人目の素数さん
19/10/14 07:10:46.02 E6sfU4BT.net
>>409-410
・極限は、ツェルメロとノイマンで、違って良い
・正則性公理は、無限上昇列を禁止しない
・すなわち、無限上昇列の任意の位置から、逆に降下する無限列は、禁止されていない
禁止されているのは、底抜けの無限降下列(つまり、最小元のない無限降下列)だよ(゜ロ゜;
・超限順序数を使って、超限回繰り返しを、定義する
ノイマンのωは、後者関数を、超限回繰り返して生成したと解することができる
同様に、ツェルメロのωは、後者関数を超限回繰り返して生成したと解することができる
QED(゜ロ゜;
452:Mara Papiyas
19/10/14 07:27:17.27 llLaGKvq.net
>>411
>・極限は、ツェルメロとノイマンで、違って良い
馬鹿はツェルメロ構成の場合の極限の数学的定義を示せ
>・正則性公理は、無限上昇列を禁止しない
> すなわち、無限上昇列の任意の位置から、
> 逆に降下する無限列は、禁止されていない
無限上昇列の任意の位置は、開始位置からの有限回上昇
したがってどこから下降しても有限列 馬鹿か貴様www
>・超限順序数を使って、超限回繰り返しを、定義する
> ノイマンのωは、後者関数を、超限回繰り返して生成したと解することができる
これ嘘なw
ノイマンのωはa∪{a}と等しくなるようなaを持たない
つまり、後者関数を適用してできたものではないw
> 同様に、ツェルメロのωは、後者関数を超限回繰り返して生成したと解することができる
これも嘘なw
つまり ツェルメロのω’も{a}と等しくなるようなaを持たない
もし、構成するとすれば、singleton(単独要素)ではない、ってことだ
馬鹿はこんな単純なことにも気づけない
統合失調症はクスリで治る可能性があるが
馬鹿にはつけるクスリがないw
453:現代数学の系譜 雑談
19/10/14 09:33:41.80 w6tqRMw5.net
>>412
>>・極限は、ツェルメロとノイマンで、違って良い
>馬鹿はツェルメロ構成の場合の極限の数学的定義を示せ
ほいよ(^^
下記で尽きている
(参考)
URLリンク(www.math.s.chiba-u.ac.jp)
千葉大学大学院理学研究科 松田茂樹
URLリンク(www.math.s.chiba-u.ac.jp)
数学の話題
URLリンク(www.math.s.chiba-u.ac.jp)
極限 千葉大学大学院理学研究科 松田茂樹
千葉大の4年生、院生向けの極限の紹介文
(抜粋)
(1.1.1) . この文章は千葉大の学生向けに書いた極限についての紹介文です。主に [Ta78], [Ka76] および
[Mac98], を参考にしています。
(1.1.3). 極限 (逆極限, 順極限) の概念は, 歴史的には様々な形で現われた。当初はポセット (部分順序集合)
を添字集合とする形で定式化され, 特にポセットが有向 (directed ないしは filtered) な場合に詳しくその性質
が調べられたようである。そのため現在でもそのような仮定の下で定義されることも多い。その後, 有向とは
限らない一般のポセットや, ポセットではなく小さい圏の上での極限�
454:ニして定式化されるようになった。この 文章では, まずは直観的に扱いやすいポセット上の極限を一般的な圏の場合に説明する。次に, 環上の加群の 極限について少し詳しく見た後, 圏の上の極限について極限を定式化しなおすことにする。 (2.1.5) 定義. ポセット S が有向 (filtered ないしは directed) とは, 任意の x, y ∈ I に対し x <= z かつ y <= z となる z ∈ I が存在することである。全順序であればもちろん有向である。 (2.1.6) 例. 自然数の集合 {1, 2, 3, . . .} を N とする。N と通常の大小関係 <= の組は全順序集合である。 1→ 2→ 3→ 4→ 5→ http(URLがNGなので、キーワードでググれ(^^ ) 檜山正幸のキマイラ飼育記 (はてなBlog) 2018-03-22 圏論の極限を具体的に (抜粋) 小さい圏Cから集合圏Setへの関手 F:C→Set に限定して、その極限を具体的に扱います。具体的とは、極限を、(無限かも知れない)直積と条件絞り込みで実際に構成することを意味します。具体的構成の方針(精神)は、「錐〈すい〉集合関手の表現対象を作りましょう」です
455:132人目の素数さん
19/10/14 09:43:55.88 yDLeEzQX.net
そもそも超限帰納法を誤解してるな。
自然数の部分集合Xについての命題
0∈X ∧ ∀x(x∈X ⇒ x+1∈X) ‥‥(1)
0∈X ∧ ∀x(∀y(y∈N ∧ y<x ⇒ y∈X) ⇒ x∈X) ‥‥(2)
の二つは同値で場合に応じて好きな方を使っていい。
いずれもX=Nのための十分条件である。
しかし整列順序集合Wの部分集合Xについての命題
0∈X ∧ ∀x(x∈X ⇒ x+1∈X) ‥‥(1)
0∈X ∧ ∀x(∀y(y∈W ∧ y<x ⇒ y∈X) ⇒ x∈X) ‥‥(2)
は同値ではない。(2)はX=Wの為の十分条件であるが(1)はそうではない。
なので(2)⇒X=Wが超限帰納法と呼ばれるものなのだけどスレ主は(1)と(2)の区別ができていない。
456:現代数学の系譜 雑談
19/10/14 10:07:37.61 w6tqRMw5.net
>>413
・任意の自然数よりも大きい最小の超限順序数 ωが定義されたとする(これは同型を除いて一意)
・ωは、順序数全体の成す類において順序位相(英語版)に関する極限点
・集積点であるとは、x の任意の近傍が S の点を無限に含むという条件に同値である
・よって、下記の「0, 1, 2, 3, ............, ω, S(ω)」上昇列から、
S(ω)→n(nは有限)の ”無限降下列”を考えると
集積点ω(=極限順序数)を通過するので、「S の点を無限に含む」、即ち、無限の自然数の元を含む
・しかし、構成法からも分かるように、この”無限降下列”は最小元をもち、正則性公理(=最小元を持たない)には反しない
QED
(参考>>322もご参照)
URLリンク(ja.wikipedia.org)
極限順序数
(抜粋)
集合論および順序論(英語版)における極限順序数は 0 でも後続順序数でもない順序数を言う。
任意の自然数よりも大きい最小の超限順序数 ω は、極限順序数である。
・順序数全体の成す類において順序位相(英語版)に関する極限点 (ほかの順序数は孤立点となる)。
URLリンク(ja.wikipedia.org)
集積点/極限点
(抜粋)
定義
位相空間 X の部分集合 S に対し、X の点 x が S の集積点であるとは、x を含む任意の開集合が少なくとも一つの x と異なる S の点を含むことを指す
この条件は T1-空間においては、x の任意の近傍が S の点を無限に含むという条件に同値である
URLリンク(ja.wikipedia.org)
T1空間
(抜粋)
X が T1-空間であるとは、X の任意の相異なる二点が分離できるときに言う
URLリンク(ja.wikipedia.org)
順序数
(抜粋)
順序数の並び方を次のように図示することができる:
0, 1, 2, 3, ............, ω, S(ω), S(S(ω)), ・・
まず、0 が最小の順序数である。その後に S(0) = 1, S(S(0)) = 2, S(S(S(0))) = 3, ... と有限順序数(自然数)が通常の順序で並んでいる
そして、すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である。ω の後にはまたその後続者たちが S(ω), S(S(ω)), S(S(S(ω))), ... と無限に続いていく
457:Mara Papiyas
19/10/14 10:12:49.10 llLaGKvq.net
>>413
馬鹿が「ほいよ」というときは、必ずといっていいほど見当違いw
∋で列をつくるんだからω’∋aとなるaを示せなくては意味がない
馬鹿のやり方がどんなものか
馬鹿自身示せないから
分かりようがないが
・ω’={{…}}だというなら延々と続いて
有限回で{}にたどりつかないので
無限降下列ができあがる
・ω’=…{{}}…だというなら
いかなるn’についてもω’∋n’でないし、
そもそもω’∋xとなるxが存在するとも思えんから
集合としての体を為してない
ω’={{},{{}},{{{}}},{{{{}}}},…}
ならいかなるn’についてもω’∋n’となる
もちろんω’はsingletonではないが、
別にsingletonでなければならない理由なんてない
馬鹿がsuc(a)={a}から勝手に誤解してるだけ
458:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/10/14 10:28:37 w6tqRMw5.net
>>415 補足
この話は、すでに>>42,>>52にモデルを書いておいたが
1)閉区間[0,1]内の数列
0(=1-1/1),1-1/2,1-1/3,・・,1-1/n,・・,(n→∞)1(=1-1/∞)=ω
ができる
2)同様に
閉区間[1,2]内の数列
1(=2-1/1),2-1/2,2-1/3,・・,2-1/n,・・,(n→∞)2=(2-1/∞)=ω
ができる
3)上記1)2)を直結すると
閉区間[0,2]内の数列
0(=1-1/1),1-1/2,1-1/3,・・,1-1/n,・・,(n→∞)1(=1-1/∞)=ω=(=2-1/1),2-1/2,2-1/3,・・,2-1/n,・・,(n→∞)2=(2-1/∞)=ω + ω
ができる
4)要するに、例えば
奇数列 1,3,5,・・・
偶数列 2,4,6,・・・
この2つを直結すると
1,3,5,・・・、2,4,6,・・・になる
これが、3)の閉区間[0,2]内の数列と全単射になり、ω + ωの数列になる
5)で、「1,3,5,・・・、2」から、2→1の”無限降下列”がとれるが、最小元を持つので、正則性公理(=最小元を持たない)には反しない
QED
459:Mara Papiyas ◆y7fKJ8VsjM
19/10/14 10:34:31 llLaGKvq.net
>>417
>「1,3,5,・・・、2」から、2→1の”無限降下列”がとれるが
これ嘘ねw
2のすぐ下の元がないから、そもそも降下列にならないw
貴様、ほんと底抜けの馬鹿だなw
460:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/10/14 10:44:43 w6tqRMw5.net
>>416
>∋で列をつくるんだからω’∋aとなるaを示せなくては意味がない
その批判は、半分は正しい
下記の順序数 注釈2の 批判と類似だね
だが、順序型の概念を使うことで回避できて、
ノイマンとツェルメロは、順序同型になる
だから、ツェルメロを使って、同じことができるって話になるんだ(下記「自然数」ご参照)
URLリンク(ja.wikipedia.org)
順序数
注釈
2^ 順序数は本来、上で述べた定義とは異なる仕方で定義されていた。その定義とは、順序集合全体の集まりを「同型である」という "同値関係" によって類別したとき、順序集合 (A, <) の "同値類" を (A, <) の順序型(order type)と呼び、特に整列集合の順序型を順序数と呼ぶというものである。
ところが現代の標準的な集合論においては、A が空集合でない限り (A, <) と同型な順序集合全体の集合といったものは存在しないことが示される。
したがって、このような順序数の定義の仕方は正当な方法であるとは認められない。
これを克服するために考えられたのが上で述べた定義であり、現在は上の定義(あるいはそれと同値な定義)が広く用いられている。
だが、順序型というアイデア自体が排除されたわけではない。
順序数を上で述べたような仕方で定義した後、それを用いることによって順序型を正当な方法で定義できるということが知られている。
ただし、整列集合の順序型と順序数は別のものになる。
詳細は「順序型」を参照。
つづく
461:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/10/14 10:45:21 w6tqRMw5.net
>>419
つづき
URLリンク(ja.wikipedia.org)
462:自然数 (抜粋) 形式的な定義 自然数の公理 集合論において標準的となっている自然数の構成は以下の通りである。 空集合を 0 と定義する。 0:=Φ ={} 任意の集合 a の後者は a と {a} の合併集合として定義される。 suc (a):=a ∪ {a} 0 を含み後者関数について閉じている集合のひとつを M とする。 自然数は「後者関数について閉じていて、0 を含む M の部分集合の共通部分」として定義される。 以上の構成は、自然数を表すのに有用で便利そうな定義を選んだひとつの結果であり、他にも自然数の定義は無限にできる。これはペアノの公理を満たす後者関数 suc(a) と最小値の定義が無限に選べるからである。 例えば、0 := {}, suc(a) := {a} と定義したならば、 0 := {} 1 := {0} = {{}} 2 := {1} = {{{}}} 3 := {2} = {{{{}}}} と非常に単純な自然数になる。 (引用終り) 以上
463:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/10/14 10:47:47 w6tqRMw5.net
>>418
> 2のすぐ下の元がないから、そもそも降下列にならないw
おまえの「降下列」の定義は?
おれは、上昇列の双対の意味で、「降下列」を使っている
だから、
降下列があれば、その双対で上昇列があり
上昇列があれば、その双対で降下列が存在する
464:Mara Papiyas ◆y7fKJ8VsjM
19/10/14 10:52:06 llLaGKvq.net
>>419
>>∋で列をつくるんだからω’∋aとなるaを示せなくては意味がない
>その批判は、半分は正しい
貴様の文章は2か所間違ってる
まず批判ではなく指摘だ
そして半分ではなく全部正しい
>だが、順序型の概念を使うことで回避できて、
何がどう回避できると妄想してるんだ?この馬鹿はw
>ノイマンとツェルメロは、順序同型になる
ノイマンのωに対応するツェルメロのω’は存在する
しかしそれは貴様の考えるような形のものではなく
{{},{{}},{{{}}},{{{{}}}},…}だ
貴様は馬鹿だから、suc(a) := {a}にとらわれて
ω’もsingletonの筈だ、と誤解してるだけw
465:
19/10/14 10:53:04 yDLeEzQX.net
誰か>>327の証明入りますか?
rankについての議論を使うのでスレ主にはちょっと無理かもしれませんが。
遊びに行くので今は無理ですが、興味ある人いれば書きます。
466:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/10/14 10:53:16 w6tqRMw5.net
>>421
補足
下記、
反対圏(=双対圏)の
例 ”半順序”な(^^
(参考)
URLリンク(ja.wikipedia.org)
反対圏
(抜粋)
圏論という数学の分野において,与えられた圏 C の反対圏(はんたいけん,英: opposite category),逆圏(ぎゃくけん)あるいは双対圏(そうついけん,英: dual category)Cop は射を逆にする,つまり,各射の始域と終域を交換することによって作られる.
逆にする操作を2回やるともとの圏になるので,逆圏の逆圏はもとの圏自身である.
記号で書けば, (C^op)^op=C である.
例
例の1つは半順序の不等式の向きを逆にして得られる.つまり X が集合で <= が半順序関係のとき,新しい半順序関係 <=new を
x <=new y ⇔ y <= x
によって定義できる.例えば,子と親,あるいは子孫と先祖という逆のペアがある.
467:現代数学の系譜 雑談 ◆e.a0E5TtKE
19/10/14 10:53:47 w6tqRMw5.net
じゃw(^^
468:Mara Papiyas
19/10/14 10:54:42.41 llLaGKvq.net
>>421
>おれは、上昇列の双対の意味で、「降下列」を使っている
降下列を定義するのは馬鹿の貴様ではないw
数学者がすでに定義している
理解できずに嘘定義をデッチあげる貴様が馬鹿w
貴様、正規部分群の定義でやらかした
自分の恥ずかしい間違いから何も学んでないのか?www
469:Mara Papiyas
19/10/14 10:56:33.59 llLaGKvq.net
>>425
二度と帰ってこなくていいぞ 馬鹿めwww
470:Mara Papiyas
19/10/14 11:02:18.06 llLaGKvq.net
>>423
時間に余裕があるときに書き込むのがよいと思う
ただここの馬鹿相手に数学科学生レベルの説明をするのは無駄
そもそも定義も公理も理解してないし、
そこから論理的に推論しなければ
証明としての体を為さない
ということも全然分かってない
馬鹿はただ式を見て直感したことをわめいてるだけ
動物が信号刺激を受けて本能行動をやらかすのと同じ
URLリンク(ja.wikipedia.org)
471:132人目の素数さん
19/10/14 11:06:08.75 yDLeEzQX.net
>>428
では気が向いたら書きます。
472:Mara Papiyas
19/10/14 11:27:30.16 llLaGKvq.net
>>429
その間、馬鹿を弄っときますw
473:132人目の素数さん
19/10/14 12:46:52 CsedbQse.net
>>420
例えば 3 := {2} = {{{{}}}} からは、
{{{{}}}}∋{{{}}}∋{{}}∋{}
と辿ることができるが(∈有限降下列)、
{{…}} からは、
{{…}}∋{{…}}∋…
と、有限回で{}へ辿り着くことはない(∈無限降下列)。
正則性公理は∈無限降下列の存在を禁じているので {{…}} はZF上の集合ですらない。
一方
{{},{{}},{{{}}},{{{{}}}},…}
の任意の元は上記前者タイプなので、∈無限降下列は存在しない。