現代数学の系譜 カントル 超限集合論at MATH
現代数学の系譜 カントル 超限集合論
- 暇つぶし2ch222:含むという意味なら成立しません。 しかし置換公理をうまく使ってZ(n)を全て含むFを再構成はできるのでそれは認めましょう。 しかし > それは、消去法で、有限でない元、つまり超限なる(整列したときに超限順序に属する)元ですよね ここがダメです。 ノイマンの方法ではEの中で順序数出ないもの、有限集合でないものを除けば求めるωが構成できました。 しかしこのFに同じ要領で {x∈F|xはある有限ツェルメロ順序数} と定めていらないものをカットしようとしても得られるものは {Z(0),Z(1),‥} にしかなりません。 ノイマンの方法を流用してもあなたの求めるΩにはなりません。
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch