現代数学の系譜 カントル 超限集合論at MATH
現代数学の系譜 カントル 超限集合論 - 暇つぶし2ch193:り、i に T を対応させる関数が与えられたとみなすことができます。  そこで、集合 I の関数による像 { T | i∈I } となる集合が存在すると言う意味の置換公理: [∀x ∀y ∀z ( ( P(x, y) ∧ P(x, z) ) → y = z ) ] → ∀a ∃b ∀y [ y∈b ⇔ ∃x ( x∈a ∧ P(x, y) )] を仮定します。  この公理は一見わかりにくい形をしていますが、左辺の ∀x ∀y ∀z ( ( P(x, y) ∧ P(x, z) ) → y = z ) というのは、x と y に関する関係 P(x, y) が一価関係であるということ、言い換えると、与えられた x に対して P(x, y) を満たす y を対応させる対応が x の関数になっていることを意味します。  従って、上の置換公理の述べるところは、一価関係 P が表す関数による集合 a の像となる集合が存在する、ということを意味しています。このような集合 b は、外延性公理により唯一つであることが証明できます。  さて、この置換公理を仮定すると、変数 y を含まない任意の命題 R に対して R ∧ x = y という命題を P(x, y) と書けば、これは明らかに一価関係です。 ゆえに、置換公理によって ∀a ∃b ∀y [ y∈b ⇔ ∃x ( x∈a ∧ R ∧ x = y ) ] すなわち ∀a ∃b ∀x [ x∈b ⇔ ( x∈a ∧ R ) ] となって、これは分出公理に他なりません。すなわち分出公理は置換公理から導出できるのです。 (引用終り) 以上




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch