現代数学の系譜 カントル 超限集合論at MATH
現代数学の系譜 カントル 超限集合論 - 暇つぶし2ch182:現代数学の系譜 雑談
19/10/06 15:57:33.13 d8OQiN+r.net
>>173
つづき
数学的帰納法
さて、ここで1つ根本的な問いとして「今作った ω は自然数集合として機能するのか」を問うてみる。言い換えると、「ω に属するモノだけで作られる自然数と言う構造が、素朴な意味で自然数と呼んでいるモノが担っていた役割をすべてこなせるのか」ということだ。
ただ、この問題にまじめに解答しようとしたら、先ほど棚上げした ω の存在証明に触れなくてはならない。そこで、ここでもやはり理屈を抜きにして「ω は自然数が果たすべき役割をひととおり果たせる」と結論だけ述べる。
余談
ここで用いられている自然数の定義はよく知られ用いられている。それを前提として下の記述を見てみよう。
1∈3
高校数学の知識では「3は集合ではないので ∈ の右側に 3 を書くのはおかしい」となるのであろうが、我々が採用した「すべてのモノは集合である」論理では 3 も集合として定義しているのでその指摘は当たらない。
しかも、3 は {0,1,2} (0と1と2だけが属する集合) と定義されているので 1∈3 (1は3に属する)



次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch