現代数学の系譜 カントル 超限集合論at MATH
現代数学の系譜 カントル 超限集合論 - 暇つぶし2ch18:132人目の素数さん
19/10/05 11:14:09.28 o3KPqddg.net
一部修正して再掲
ーωの定義ー
順序対<x,y>の定義
∀z <x,y>:⇔z=x ∨ (∀w w∈z ⇔ w=x ∨ w=y)
関数の定義
f:x→y:⇔∀z ∀a∈x ∃!b∈y <a,b>∈f
関数が単射の定義
f:x→y is injective:⇔∀a b c <a,c>∈f ∧ <b,c>∈f⇒a=b
関数が全射の定義
f:x→y is surjective:⇔∀b∈y ∃a∈x <a,b>∈f
xが有限集合の定義
x:finite:⇔∀f:x→x f:monic⇒f:epic
xが順序数の定義
x:ordered number:⇔∀a b c∈x a∈b ∧ b∈c ⇒ a ∈c ∧ ∀y⊂x y≠Φ ⇒ ∃a∈y ∀b∈y b=a ∨ a ∈ b
ωの定義
∀x∈ω :⇔ x:finite ∧ x:順序数
ー再掲終わりー
簡単にするために正則性の公理を利用して一部手をぬいてますがそこはお察し。
数学科で学んだ経験が無くとも普通の集合論の教科書の最初の10ページ目くらいまでに載ってる話でココまでは議論もないでしょう。
その ‘ツェルメロ構成のω’ を現代数学での議論の範囲内で議論するつもりならその ‘ω’ に現代数学でいうところの ‘well defined’ と呼べる定義を与えて下さい。
哲学の話をしたいならご自由に。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch