現代数学の系譜 カントル 超限集合論at MATH
現代数学の系譜 カントル 超限集合論 - 暇つぶし2ch166:現代数学の系譜 雑談
19/10/06 13:26:06.86 d8OQiN+r.net
>>159 つづき
なので、正則性公理にいう
”無限下降列である x∋x1∋x2∋・・・ ”は
底抜けの最小元を持たない無限単調減少列の意味ですね(^^
これを、取り違えて
最小元を持つ、順序数の無限列に適用して、
「正則性公理に反する」とかは、いけませんね(^^
(参考)
URLリンク(ja.wikipedia.org)
正則性公理
(抜粋)
以下の4つの主張はいずれも同値であり、どれを正則性の公理として採用しても差し支えない。
・任意の空でない集合xに対して、∃y∈x,x∩y=0
・∀xについて、∈がx上well-founded
・∀xについて、無限下降列である x∋x1∋x2∋・・・ は存在しない。
(引用終り)


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch