19/10/06 13:05:38.30 d8OQiN+r.net
>>154 追加
さて、上記von Neumannで、自然数Nが構成できる
無限降下列
0∈1∈2・・∈N・・∈N’
とでも書きますかね
0∈1∈2・・∈N・・∈N’の部分は無限長
0∈1∈2・・∈N’の部分も無限長
上段が、正則性公理でだめなら
下段も、正則性公理でだめ(^^
そもそも、順序数は無限なのだから、正則性公理で規制されるものではない
ところで、下記の「濃度と順序数 fujidig」では
”無限強単調減少列
x0 > x1 > x2 > . . . ”
という用語を使っています(^^
この用語が適切かどうか不明だが
「濃度と順序数 fujidig」では、最小元を持たない無限単調減少列という意味でしょう
(文学的表現では、底抜けってことですね)
一方、順序数での数列には、必ず最小元を持つ。それが、無限列であっても
正則性公理で禁止しているのは、明らかに、底抜けの最小元を持たない無限単調減少列です
最小元を持つ、上昇する無限列を禁止するものではない!(^^
URLリンク(fujidig.github.io)
でぃぐのページ ハンドルネーム: fujidig
URLリンク(fujidig.github.io)
濃度と順序数 fujidig
June 21, 2016
(抜粋)
P15
順序数というのは自然数が持つ「番号を振る」という目的を無限方向に拡張したものだといえる.
P16
・整列集合 N の型は ω と書かれる.これは最小の無限順序数である.
・順序数を小さい方から順に並べると
0, 1, 2, 3, . . . , ω, ω + 1, ω + 2, ω + 3, . . . , ω2, ω2 + 1, . . . となる
・今並べたのは順序数のうちほんの小さい部分にすぎない.もっと大きい順序数がまだまだある
P17
命題 4
整列集合 X から無限強単調減少列
x0 > x1 > x2 > . . . はとれない.
証明.
x0 > x1 > x2 > . . . がとれると仮定する.
すると X の部分集合
{x0, x1, x2, . . . } には最小元がないため整列性に反する.
P18
命題 5
順序集合 X ≠ Φ が整列集合であるために
は,全順序集合であって無限強単調減少列
x0 > x1 > x2 > . . . がとれないことが
必要十分.