現代数学の系譜 工学物理雑談 古典ガロア理論も読む77at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 - 暇つぶし2ch961:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/16 15:18:31.30 86h80x0A.net
>>881
つづき
URLリンク(en.wikipedia.org)
Group scheme
(抜粋)
Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems.
The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Raynaud and Michel Demazure in the early 1960s.
Examples
・The multiplicative group Gm has the punctured affine line as its underlying scheme, and as a functor, it sends an S-scheme T to the multiplicative group of invertible global sections of the structure sheaf.
 Algebraic tori form an important class of commutative group schemes, defined either by the property of being locally on S a product of copies of Gm, or as groups of multiplicative type associated to finitely generated free abelian groups.
・For any positive integer n, the group μn is the kernel of the nth power map from Gm to itself. As a functor, it sends any S-scheme T to the group of global sections f of T such that fn = 1.
 Over an affine base such as Spec A, it is the spectrum of A[x]/(x^n?1). If n is not invertible in the base, then this scheme is not smooth. In particular, over a field of characteristic p, μp is not smooth.
(引用終り)
以上


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch