現代数学の系譜 工学物理雑談 古典ガロア理論も読む77at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 - 暇つぶし2ch957:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/16 11:38:48.56 86h80x0A.net
>>878
つづき
URLリンク(en.wikipedia.org)
Kronecker?Weber theorem
(抜粋)
In algebraic number theory,
it can be shown that every cyclotomic field is an abelian extension of the rational number field Q,
having Galois group of the form (Z/nZ )^x .
The Kronecker?Weber theorem provides a partial converse: every finite abelian extension of Q is contained within some cyclotomic field.
In other words, every algebraic integer whose Galois group is abelian can be expressed as a sum of roots of unity with rational coefficients.
For example,
√5=e^2πi/5-e^4πi/5-e^6πi/5+e^8πi/5,
√5=e^2πi/5-e^4πi/5-e^6πi/5+e^8πi/5,
√-3=e^2πi/3-e^4πi/3,√-3=e^2πi/3-e^4πi/3, and
√3=e^2πi/12-e^10πi/12.√3=e^2πi/12-e^10πi/12.
The theorem is named after Leopold Kronecker and Heinrich Martin Weber.
(引用終り)
以上


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch