19/10/15 20:57:55.93 9ROe+Kvi.net
>>853
訂正:つづき→つづく
つづき
ところで
>>838
>URLリンク(hooktail.sub.jp)
> 1のn乗根 (Joh著) 物理のがきしっぽ
> 1 の原始 n 乗根はφ(n) 個あります.
>ここに出てきたφを オイラーのファイ関数 と呼びます.
これ、下記の「巡回群」の”n が有限ならば G を生成する元の総数はちょうど φ(n) に等しい”と一致しているが
しかし、英文 Cyclic group の
”If p is a prime number, then any group with p elements is isomorphic to the simple group Z/pZ. A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n,φ(n)) = 1.”
の記述と不一致?(゜ロ゜;
巡回群とCyclic groupの記述が
いや、調べるとオイラーのφ(n)は、一般に偶数で、素数pがφ(n)には出現しないので、「巡回群」の記述へんだよね(^^
URLリンク(ja.wikipedia.org)
巡回群
(抜粋)
性質
位数 n の巡回群(n は無限大でもよい)G と G の任意の元 g について、以下のようなことが言える。
・n が有限ならば G を生成する元の総数はちょうど φ(n) に等しい。ここで φ はオイラーのトーシェント函数である[4]。
・もっと一般に、d が n の約数ならば Z/nZ の位数 d の元の個数は φ(d) である。また、m の属する剰余類の位数は n/gcd(n,m) で与えられる。
・p が素数ならば、位数 p の群は(同型の違いを除き)巡回群 Cp(あるいは加法的に書くならば Z/pZ)しかない[5]。
つづく