現代数学の系譜 工学物理雑談 古典ガロア理論も読む77at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 - 暇つぶし2ch887:異なる1のn乗根を含む体とし   Lを、Kにaのn乗根の1つを追加した体とする   このときのガロア群G(L/K)は?



888:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/14 17:01:44 w6tqRMw5.net
>>814

これも雑談だが
URLリンク(ja.wikipedia.org)(%E3%83%86%E3%83%AC%E3%83%93%E3%83%89%E3%83%A9%E3%83%9E)
未成年 (テレビドラマ)
(抜粋)
『未成年』(みせいねん)は、TBS系列の金曜ドラマ枠(毎週金曜日22:00 - 22:54、JST)で1995年10月13日から12月22日まで放送された日本のテレビドラマ。主演はいしだ壱成。

同年代の若者5人を中心に、青春の過程で起こる様々な苦悩と葛藤を生々しく描いたこの作品は、出演芸能人の出世作としても知られている。後年歌手として大ブレイクした浜崎あゆみの数少ない女優出演作のひとつでもある。全11回。

若者の青春群像劇として放映当時に大ブームを巻き起こし、平均視聴率は20.0%、第8回は最高視聴率23.2%(関東地区 ビデオリサーチ調べ)を記録した。

後年、SMAPのメンバーである中居正広は本作を「慎吾が出てたドラマの中で一番好き」と絶賛している[2]。

主題歌にはカーペンターズが使用され、ベスト盤の売り上げも好調で、再びスポットが当たるきっかけとなった。

889:Mara Papiyas ◆y7fKJ8VsjM
19/10/14 17:03:00 llLaGKvq.net
感傷に浸ってる耄碌爺に質問だw

1. Qに1のn乗根を添加した拡大体をEとする
  このときのガロア群G(E/Q)は?

2. Kをn個の異なる1のn乗根を含む体とし
  Lを、Kにaのn乗根の1つを追加した体とする
  このときのガロア群G(L/K)は?

890:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/14 17:41:02.29 w6tqRMw5.net
>>815
めんどくさいやつだな
そうあせるな(^^
Q1. Qに1のn乗根を添加した拡大体をEとする
  このときのガロア群G(E/Q)は?
A1. 面倒なのでn=p(素数)とするよ
 (こう仮定してもガロア理論には十分だから)
 位数p-1の巡回群
 因みに、1のn乗根 ωp=n√1 (1の原始根)として
 Eは、Qにωpを添加した拡大体になる(ガウスのDAに書いてあるらしい)
(なお、G(E/Q)が可解である(ベキ根で解ける)ことも、ガウスのDAに書いてあるらしい)
Q2. Kをn個の異なる1のn乗根を含む体とし
  Lを、Kにaのn乗根の1つを追加した体とする
  このときのガロア群G(L/K)は?
A2. 同様にn=p(素数)とするよ。そして、n乗根 n√a は無理数とする
  このとき、ガロア群G(L/K)は位数pの巡回群になる
  因みに、LはKummer拡大と呼ばれる
(参考)
URLリンク(ja.wikipedia.org)
クンマー理論
(抜粋)
クンマー拡大
一般的に、K が n 個の異なる 単元の n 乗根を含む(このことは K の標数が n を割らないことを意味する)とき、K と結合すると、K の任意の元 a の n 乗根は(n を割るようなある m が存在し、次数 m の)クンマー拡大を生成する。
多項式 X^n ? a の分解体として、クンマー拡大は必然的にガロア拡大となり、ガロア群は位数 m の巡回的となる。
n√a を通してガロア作用を追いかけることは容易である。

891:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/14 17:57:01.08 w6tqRMw5.net
>>818
ガウス、アーベル、ガロアについては、下記の高瀬正仁先生ご参照
http(URLがNGなので、キーワードでググれ(^^ )
日々のつれづれ
(ガウス32)アーベル方程式とガロアの第一論文 Author:オイラー研究所の所長 高瀬正仁 2008-04-26
(抜粋)
 代数的可解性を左右する根源的な要因は「諸根の相互依存関係」にあります。この認識はガロアもまた共有し、代数方程式の代数的可解性をテーマにした第一論文
 「方程式が冪根を用いて解けるための条件について」
において、
《冪根を用いて解ける方程式のどれもが満たし、しかも逆に、その可解性を保証するひとつの一般条件》
をみいだすことに成功しました。この条件は「方程式の根の配列の群」の言葉で記述されています


892:(ただし、この「群」という言葉は「ものの集まり」というほどの意味にすぎず、今日の群の概念とは無関係です)。 第一論文からここまでの部分を抽出して精密に展開すれば、今日のいわゆるガロア理論が手に入ります。 他方、ガウスが円周等分方程式を解いていく道筋を忠実に再現すれば、そのままガロア理論が出現するという事実もまた注目に値します。 つづく



893:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/14 17:57:20.44 w6tqRMw5.net
>>819
つづき
アーベルはガウスの理論の根幹をなす数学的思想の泉から直接、アーベル方程式の概念を取り出しましたが、ガロアはガロアでガウスの理論の「証明の構造」を学び、ガウスの理論をその雛形と見ることを可能にする大きな理論を構想したのでした。
 ガロアの第一論文はガロアが書いた一番はじめの論文というわけではありませんが、「第一論文」と呼ぶ習わしになっています。
 1832年5月30日早朝の決闘の前夜、友人オーギュスト・シュヴァリエに宛てた有名な遺書において、ガロアは冒頭で「(これまでの研究を元手にして)三篇の論文を作成することができると思う」と述べ、続いて各論文の素描を試みました。
「第一論文はもう書いた」と言われているが、これは上記の代数方程式論に関する論文を指しています。
 ガロア理論により、素次数既約方程式の代数的可解性の判定条件が手に入ります。
《通約可能な因子をもたない(註。「既約」という意味です)素次数の方程式が冪根を用いて解けるためには、そのすべての根が、それらのうちのどれかふたつの根の有理関数になっていなければならず、しかもそれで十分である。》
 ガウスに端を発し、アーベルが洞察した代数的可解性の基本原理は、ガロアに継承されてひとつの完結した姿形を獲得したのでした。
 ガロアが言及しているもうひとつの応用例は、楕円関数論におけるアーベルの予想の証明である。アーベルは論文「楕円関数研究」において、モジュラー方程式は一般に代数的には解けないであろうと予想しましたが、ガロアはこれを受けて次のように述べています。
《代数方程式論のさまざまな応用のうち、一部分は楕円関数の理論のモジュラー方程式に関係がある。モジュラー方程式を冪根を用いて解くのは不可能であることが証明されるであろう。》
 楕円関数論と代数方程式論の関係は密接かつ不可分であり、しかもアーベルの予想の証明こそ、ガロアの理論の眼目なのでした。ガロアの言葉にはガウス、ルジャンドル、アーベル、ヤコビなどの手になる浩瀚な楕円関数論の全史が凝縮されていて、印象は深遠です。さながら数学の神秘の淵をのぞき見るような感慨があります。
(引用終り)
以上

894:Mara Papiyas ◆y7fKJ8VsjM
19/10/14 18:01:20 llLaGKvq.net
>>818
ん、なんかおかしなこといってるね

>面倒なのでn=p(素数)とするよ

そんな仮定するほうが面倒だろw

>位数p-1の巡回群

巡回群だといいたいためにpの条件を持ち出したんなら馬鹿

正しい答えは
乗法群(Z/nZ)× (位数n-1)

覚えとけ

895:
19/10/14 18:17:56 yDLeEzQX.net
>>811
cos(2π/11)のガロア群は位数5の巡回群だけど?

896:Mara Papiyas
19/10/14 18:47:31.64 llLaGKvq.net
>>822
馬鹿の1は、最大の可解群しか頭にない
その正規部分群の場合もあることを想定してない
相変わらずヌケサクwww

897:Mara Papiyas
19/10/14 18:51:56.20 llLaGKvq.net
>>818
じゃ>>815の続きだ
Qにaの5つの5乗根を添加した体をKとする
このときのガロア群G(K/Q)は?

898:132人目の素数さん
19/10/14 19:03:44.53 yDLeEzQX.net
どんな文章をどう引用したのかわからんけど、Qに1の冪根全部加えた体を考えてその上の5次拡大に話を限定した時のQ上のGalois群とかなのかもしれん。
方程式の可解性論じ


899:るとき1の冪根入ってないとまた話違ってくるからな。 引用するのはいいがその文章読むのに必要な部分がわかってないから、その部分だけ読むとトンチンカンな話になってしまう。 文章の意味が日本語として読めてるだけで数学の文章として意味がとれてないんだろう。



900:Mara Papiyas
19/10/14 20:36:01.80 llLaGKvq.net
>>825
1の冪根による拡大(円分拡大)の後、
aの冪根による拡大(クンマー拡大)を行うのは
それぞれアーベル拡大として実現できるからだろう
もちろん全体としては一般的にガロア群は非可換になる

901:132人目の素数さん
19/10/14 21:04:18.19 yDLeEzQX.net
>>826
まぁ多分それなんだとは思うんだけどね。
証明なんか読んでないだろうからその話の意味が通じるために必要な情報が何と何なのかわからんのだろう。

902:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/14 23:31:33.60 w6tqRMw5.net
>>822
>cos(2π/11)のガロア群は位数5の巡回群だけど?
ああ、そうですね
コンテキスト(文脈)で、Q係数の一般5次代数方程式で、方程式の群が可解群になる最大の群が>>811に書いてある「高々位数が20の置換群(線形置換群)でなければならない」という話です(^^

903:132人目の素数さん
19/10/14 23:38:56.41 ceRjWFfM.net
>>821
>正しい答えは
>乗法群(Z/nZ)× (位数n-1)
乗法群(Z/nZ)×はいいけど、位数n-1じゃないよ。
たとえばZ/6Zにおける乗法可逆元の類は、1,5の2つのみ。
一般的にはオイラーのφ函数を使ってφ(n)とあらわされる数になる。

904:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/14 23:42:34.01 w6tqRMw5.net
>>825
(引用開始)
どんな文章をどう引用したのかわからんけど、Qに1の冪根全部加えた体を考えてその上の5次拡大に話を限定した時のQ上のGalois群とかなのかもしれん。
方程式の可解性論じるとき1の冪根入ってないとまた話違ってくるからな。
引用するのはいいがその文章読むのに必要な部分がわかってないから、その部分だけ読むとトンチンカンな話になってしまう。
文章の意味が日本語として読めてるだけで数学の文章として意味がとれてないんだろう。
(引用終り)
レスありがとう
ご指摘の通りです。正しい(^^
当然、Qに1の冪根全部を加えた体で考えています
方程式のガロア理論では、デフォルトと思います
ガロアの原論文も、そうです

905:132人目の素数さん
19/10/14 23:47:33.15 ceRjWFfM.net
>方程式の可解性論じるとき1の冪根入ってないとまた話違ってくるからな。
1の冪根の方程式が代数的に可解であることはガウスの先行研究で分かっていたので、ガロアは1の冪根を予め添加しておいてよいとしてるのですね。
ちなみにガウスの研究は当然ながらガロア理論の雛型にもなっている。

906:132人目の素数さん
19/10/14 23:51:47.04 ceRjWFfM.net
1のべき根の方程式が解けるといっても、勿論1のn乗根=1^{1/n} とするのはなしねw
1のn乗根を代数的に解いたとき、冪根指数としてあらわれるのは
φ(n)の約数のみ。根号の中身は1ではない複雑な数になる。
(整数論的に言うと、分岐する素数と関係がある。)

907:132人目の素数さん
19/10/14 23:57:01.17 yDLeEzQX.net
方程式考えるとき下の体が1の冪根全部含む時しか考えないわけないだろ?
なんでガロア理論の本まだ一冊ロクによめてすらいないのにそんないい加減な思い込みしてるんだよ?
俺が読んだ教科書の中だけに限定したってそんなデフォルト設定してる本なんかほとんどないわ。

908:132人目の素数さん
19/10/14 23:59:50.95 ceRjWFfM.net
正17角形の作図が定木とコンパスのみで可能⇔
1の17乗根の方程式が、平方根を繰り返し開いていくことのみによって解ける。
ガウスも正17角形の作図は自慢だったらしい。
ベッドの中で思いついたとのこと。
実質的にやってることはガロア理論の原型のようなこと。
頭の中だけで理論構成するのもガロアと共通している。

909:132人目の素数さん
19/10/15 00:07:55.67 OSBV4wpg.net
>方程式考えるとき下の体が1の冪根全部含む時しか考えないわけないだろ?
それだと円分体のガロア理論がナンセンスになるのでないですね。
整数論的にも大きな違いが生じる。
ガロアの論文で、冪根解法を論じる際に簡単のため
そう設定してるってだけです。

910:Mara Papiyas ◆y7fKJ8VsjM
19/10/15 05:25:30 3uWjxYrs.net
>>829
>乗法群(Z/nZ)×はいいけど、位数n-1じゃないよ。

そうでした。大失敗

911:Mara Papiyas
19/10/15 06:22:16.83 3uWjxYrs.net
>>835
要するに円分拡大とクンマー拡大に分けて考えてるってことだな

912:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/15 07:18:50.26 9ROe+Kvi.net
>>829 (>>836)
ID:ceRjWFfMさん、レスありがとう
(引用開始)
>正しい答えは
>乗法群(Z/nZ)× (位数n-1)
乗法群(Z/nZ)×はいいけど、位数n-1じゃないよ。
(引用終り)
ご指摘の通りです
>>818の訂正版)
Q1. Qに1のn乗根を添加した拡大体をEとする
  このときのガロア群G(E/Q)は?
A1. 面倒なのでn=p(素数)とするよ
 (こう仮定してもガロア理論には十分だから)
 位数pの巡回群
 因みに、1のn乗根 ωp=p√1 (1の原始根)として
 Eは、Qにωpを添加した拡大体になる(ガウスのDAに書いてあるらしい)
(なお、G(E/Q)が可解である(ベキ根で解ける)ことも、ガウスのDAに書いてあるらしい)
(終り)
なお、1のn乗根を添加した拡大体の解説は、下記に詳しい
因みに、最小多項式を考えると、x^n-1=0の”x^n-1”は可約で、因子x-1を持つので、因数分解できて、一般に次数が必ず1下がる
n=p(素数)のとき、最小多項式の次数はp-1です
(おれも、あんまり分かってないね(^^; )
URLリンク(hooktail.org)
ガロア理論入門 物理のがきしっぽ
URLリンク(hooktail.sub.jp)
1のn乗根 (Joh著) 物理のがきしっぽ
(抜粋)
1 の原始 n 乗根はφ(n) 個あります.
ここに出てきたφを オイラーのファイ関数 と呼びます.ファイ関数を使うと, |G(E/Q)|=[Q(ζ):Q] <=φ(n) と書くことが出来ます.また,次の定理も重要です.
x^n-1=0 の解 ζ の最小多項式は (x-ζ)(x-ζ^k1)・・・(x-ζ^ks) の形に書けることが要請されます.
添字の ki は, (n,ki)=1 を満たす 1 < k < n だけを取るものとします.
この最小多項式を 円周等分方程式 と呼びます.
円周等分方程式の解は,複素平面上で単位円の円周を等分点に当たりますから,この名前の意味は非常に明快だと思います.

913:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/15 07:48:37.67 9ROe+Kvi.net
>>824
めんどくさいやつだな
そうあせるな(^^
Qにaの5つの5乗根を添加した体をKとする
 ↓
1の5乗根の原始根をζ5と書く
あと、5√a(aの5乗根の実根)な
 ↓
1の5乗根の原始根 ζ5を添加する拡大から、位数5の巡回群が出る
5√a(aの5乗根の実根) を添加する拡大から、位数5の巡回群が出る
 ↓
全体では、位数5の巡回群と位数5の巡回群の直積の群で、位数25の群
位数25の群は、巡回群ではないみたいだね(^^
(∵下記”二つの巡回群 Z/nZ, Z/mZ の直積群がふたたび巡回群となるための必要十分条件は n と m が互いに素であることである”)
URLリンク(ja.wikipedia.org)
巡回群
(抜粋)
性質
・二つの巡回群 Z/nZ, Z/mZ の直積群がふたたび巡回群となるための必要十分条件は n と m が互いに素であることである[6]。
従って例えば Z/12Z は Z/3Z と Z/4Z との直積に分解されるが Z/6Z と Z/2Z との直積とはならない。
URLリンク(ja.wikipedia.org)(%E6%95%B0%E5%AD%A6)
群 (数学)
(抜粋)
群の直積と半直積

914:132人目の素数さん
19/10/15 08:06:54.17 qksvMa12.net
おっちゃんです。
>>773
>本なら、アルティンとか、Coxとかもあるけどね(^^
実代数幾何でよく行われるという議論の原形になった実体の理論に興味があって、永田可換体論を買ってしまった。
読んで理解するのは長い道になりそうだ。まあ、他のことにも関心はあるので、気長に読み進めて行く。
ガロア理論を理解するだけなら群論に取り組んだ方がいいとは思うけど。
或いは啓蒙書でも足りていると思うけど。
最近知ったことだけど、アペリーはむしろ計算機を援用する形でζ(3)の無理性を証明した可能性があるようですな
(一松著 講談社 ブルーバックス 2016再発行の「四色問題」 254ページ参照)。
もしかしたら、意外に啓蒙書も馬鹿にすることは出来ないのかも知れませんな。

915:
19/10/15 08:21:04 qksvMa12.net
>>773
>>840の下から2行目の訂正:
>(一松著 講談社 ブルーバックス 2016再発行の「四色問題」 254ページ参照)。

>(一松信著 講談社 2016年再発行 ブルーバックス「四色問題」 254ページ参照)。
以前発行されたという初版もあるので注意。
いや~、今まで全く知りませんでした。

916:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/15 10:06:11.79 GY+TtPJn.net
>>840
おっちゃん、どうも、スレ主です。
>最近知ったことだけど、アペリーはむしろ計算機を援用する形でζ(3)の無理性を証明した可能性があるようですな
>(一松著 講談社 ブルーバックス 2016再発行の「四色問題」 254ページ参照)。
ああ、そうなん
一松信先生ね。懐かしいね
URLリンク(ja.wikipedia.org)
一松 信(ひとつまつ しん、1926年(大正15年)3月6日 - )は、日本の数学者。京都大学名誉教授。日本数学検定協会名誉会長。
人物
「すでに学生時代に多変数関数論の最高峰をきわめられた」[1]と紹介される。
(引用終り)
>もしかしたら、意外に啓蒙書も馬鹿にすることは出来ないのかも知れませんな。
そりゃそうだ
いまどき、数学の範囲の広がりとレベルの高さを考えると、
そういう入門書とか啓蒙書をバカにしてはいけないと思うな
>永田可換体論
古すぎないか?
サイドリーダーとして読むには良いかもしれないが
おれなら、現代本を読んで、サイドリーダーとして必要なら永田を参照するけどね

917:132人目の素数さん
19/10/15 10:26:56.67 qksvMa12.net
>>842
>>永田可換体論

>古すぎないか?
Hilbertの第17問題を解くためにArtinが構築したという順序体や実閉体
などの理論が詳細に書かれているのは、和書では永田可換体論だけらしい。

918:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/15 10:40:11.58 GY+TtPJn.net
>>839
補足
いま議論している部分は、”べき根拡大”というやつね
下記が、参考になるだろう
はてなblog(URLがNGなので、キーワードでググれ(^^ )
ガロア理論のメモ(その6):べき根拡大と可解群 めもめも ※ 2017/09/27
(抜粋)
本シリーズの内容は、筆者の学習ノートレベルのもので、個々の証明には不正確な部分が多々あります。
これらをより正確なものに加筆・修正して大幅に説明を書き加えたものを同人誌として、技術書典3で配布する予定です。
補題6.2

この補題を基にして、べき根拡大と可解群の関係が得られる。多項式の解がべき根を用いて表現できるかどうかを判定する、ガロア理論の根幹の1つとなる。
定理6.1
―――――
多項式 f(X)=X^n?a∈F[X] の分解体を E とする時、Aut(E/F) は可解群となる。このような拡大をべき根拡大とよぶ。

補題6.2より、Aut(F(ω)/F) はアーベル群なので、これで定理が証明された。
―――――
文献によっては、X^n?a の根の1つのみを加えた拡大をべき根拡大と定義している場合もあるが、ここではすべての根を加えた分解体として定義している点に注意。
これにより、以降の各種定理の証明が少し簡単になる。
(根の1つのみを加えた定義の場合は、証明の中で、すべての根を加えた体まで拡張して議論する必要がある。)

―――――
定理6.1で存在が保証される α は、一意ではない点に注意する。
たとえば、f(X)=X^3?2∈Q[X] の根は、ω を1の原始3乗根として、{3√2,3√2ω,3√2ω^2} であり、α=3√2 とすると、分解体は、E=Q(3√2,ω) となる。
一方、α=3√2ω として、E=Q(3√2ω,ω) としても結果は同じである。

919:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/15 10:53:06.74 GY+TtPJn.net
>>843
『可換体論』か『可換環論』か忘れたが、永田 雅宜先生の本、見たことあるな
(内容は覚えていないが)
”数学セミナー  2019年11月号 特集= すごい反例 ヒルベルトの第14問題……黒田 茂”
が、永田 雅宜先生の話だね
(参考)
URLリンク(www.nippyo.co.jp)
数学セミナー  2019年11月号
特集= すごい反例
ヒルベルトの第14問題……黒田 茂 22
URLリンク(ja.wikipedia.org)
永田 雅宜(ながた まさよし、1927年2月9日 - 2008年8月27日)は、日本の数学者。京都大学名誉教授。
業績
1960年代、1970年代に可換環論と代数幾何学の基礎付けにおいて大きな業績を残した。不変式論(英語版)を用いてヒルベルトの第14問題(英語版)の反例を構成し否定的に解決した。他にも代数多様体のコンパクト化、ネーター環における業績がある。
ヒルベルト第14問題を否定的に解決した論文は僅か7ページだった[4]。
著作
『可換体論』裳華房、1967年。
『可換環論』紀伊國屋書店、1974年。

920:132人目の素数さん
19/10/15 11:21:44.16 qksvMa12.net
>>842
>>最近知ったことだけど、アペリーはむしろ計算機を援用する形でζ(3)の無理性を証明した可能性があるようですな
>>(一松著 講談社 ブルーバックス 2016再発行の「四色問題」 254ページ参照)。

>ああ、そうなん
まあ、私は有理性の判定や証明に計算機(家にあるのはパソコン)は全く使わずに、
はじめは得られた奇妙な論理とそれに基づく手計算でたまたまγの有理性を証明出来ただけだが、
実数の有理性或いは無理性の証明に計算機を援用出来ることもあるということは分かった。

921:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/15 13:24:46 GY+TtPJn.net
>>833-835
>ガロアの論文で、冪根解法を論じる際に簡単のため
>そう設定してるってだけです。

ID:yDLeEzQX さん、ID:ceRjWFfMさん、ID:OSBV4wpgさん
みなさんレベル高いね

全く、ご指摘の通り
”ガロアの論文で、冪根解法を論じる際に簡単のため”です
ガロアの論文に書いてある通りです
(ガロア理論のあらすじは、>>844辺りに書いてありますね)

922:132人目の素数さん
19/10/15 17:36:10.71 qksvMa12.net
それじゃ、おっちゃんもう寝る。

923:Mara Papiyas
19/10/15 19:38:52.32 3uWjxYrs.net
>>839
>そうあせるな(^^
といいつつあせって地雷を踏んだ馬鹿w
>Qにaの5つの5乗根を添加した体をKとする
> ↓
>1の5乗根の原始根をζ5と書く
>あと、5√a(aの5乗根の実根)な
> ↓
>1の5乗根の原始根 ζ5を添加する拡大から、位数5の巡回群が出る
>5√a(aの5乗根の実根) を添加する拡大から、位数5の巡回群が出る
誤 1の5乗根の原始根 ζ5を添加する拡大から、位数5の巡回群が出る
正 1の5乗根の原始根 ζ5を添加する拡大から、位数4の巡回群が出る
φ(5)=4だよ
だいたい一般的にφ(n)=nにはならない
pが素数のときφ(p)=p-1
ということで
> ↓
>全体では、位数5の巡回群と位数5の巡回群の直積の群で、位数25の群
全体では、位数20の群ね
だいたい、25が120(5次の対称群S5の位数)の約数でない
時点でおかしいって気づけよw
あと、勝手に直積とかいってるけど、
アーベル群の直積だったらアーベル群だよ?
そう言い切っちゃっていいのかい?( ̄ー ̄)
まさか可解群はアーベル群だ!とか馬鹿なこといわんよなw
(3次の対称群S3は可解群だがアーベル群じゃないぞw)

924:Mara Papiyas
19/10/15 19:43:35.29 3uWjxYrs.net
         ____   
       / \  /\ キリッ
.     / (ー)  (ー)\      
    /   ⌒(__人__)⌒ \    <1の5乗根の原始根ζ5を添加する拡大から、
    |      |r┬-|    |      位数”5”の巡回群が出る
     \     `ー'´   /     
    ノ            \
  /´               ヽ              
 |    l              \
 ヽ    -一''''''"~~``'ー--、   -一'''''''ー-、.    
  ヽ ____(⌒)(⌒)⌒) )  (⌒_(⌒)⌒)⌒))
 
          ____
        /_ノ  ヽ、_\             <.だっておwww
 ミ ミ ミ  o゚((●)) ((●))゚o      ミ ミ ミ
/⌒)⌒)⌒. ::::::⌒(__人__)⌒:::\   /⌒)⌒)⌒)
| / / /      |r┬-|    | (⌒)/ / / //  
| :::::::::::(⌒)    | |  |   /  ゝ  :::::::::::/
|     ノ     | |  |   \  /  )  /  
ヽ    /      `ー'´      ヽ /    /     
 |    |   l||l 从人 l||l      l||l 从人 l||l   バ   
 ヽ    -一''''''"~~``'ー--、   -一'''''''ー-、 ン
  ヽ ____(⌒)(⌒)⌒) )  (⌒_(⌒)⌒)⌒)) バ
                             ン

925:Mara Papiyas
19/10/15 19:52:45.56 3uWjxYrs.net
>>849
>一般的にφ(n)=nにはならない
φ(1)=1だったな

926:Mara Papiyas
19/10/15 19:59:41.23 3uWjxYrs.net
>ID:yDLeEzQX さん、ID:ceRjWFfMさん、ID:OSBV4wpgさん
>みなさんレベル高いね
円分体Q(ζn)のガロア群が乗法群(Z/nZ)×になることの説明は
きっとハイレベル数学人の彼らがしてくれるだろう
馬鹿はもちろん分かってないw
分かってたら
「1の5乗根の原始根 ζ5を添加する拡大から、位数5の巡回群が出る」
なんて馬鹿な間違いするわけがないw

927:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/15 20:56:37.22 9ROe+Kvi.net
>>829 補足
(引用開始)
乗法群(Z/nZ)×はいいけど、位数n-1じゃないよ。
たとえばZ/6Zにおける乗法可逆元の類は、1,5の2つのみ。
一般的にはオイラーのφ函数を使ってφ(n)とあらわされる数になる。
(引用終り)
ID:ceRjWFfMさん、レベル高いね
そうそう、そうでした。
なんか、正確に書くのが面倒になって、n=p(素数)として逃げたけど、
「位数n-1」のところ間違っていたら、”しゃれ


928:にならんな”(これ関西では常套句ですが(^^ ) (大体自分で書くと、タイポや誤記もあるから、コピペベースにしている意味もあるのだが、根本的に自分の理解不十分だったよね、巡回群のこと(^^ ) つづき



929:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/15 20:57:55.93 9ROe+Kvi.net
>>853
訂正:つづき→つづく
つづき
ところで
>>838
>URLリンク(hooktail.sub.jp)
> 1のn乗根 (Joh著) 物理のがきしっぽ
> 1 の原始 n 乗根はφ(n) 個あります.
>ここに出てきたφを オイラーのファイ関数 と呼びます.
これ、下記の「巡回群」の”n が有限ならば G を生成する元の総数はちょうど φ(n) に等しい”と一致しているが
しかし、英文 Cyclic group の
”If p is a prime number, then any group with p elements is isomorphic to the simple group Z/pZ. A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n,φ(n)) = 1.”
の記述と不一致?(゜ロ゜;
巡回群とCyclic groupの記述が
いや、調べるとオイラーのφ(n)は、一般に偶数で、素数pがφ(n)には出現しないので、「巡回群」の記述へんだよね(^^
URLリンク(ja.wikipedia.org)
巡回群
(抜粋)
性質
位数 n の巡回群(n は無限大でもよい)G と G の任意の元 g について、以下のようなことが言える。
・n が有限ならば G を生成する元の総数はちょうど φ(n) に等しい。ここで φ はオイラーのトーシェント函数である[4]。
・もっと一般に、d が n の約数ならば Z/nZ の位数 d の元の個数は φ(d) である。また、m の属する剰余類の位数は n/gcd(n,m) で与えられる。
・p が素数ならば、位数 p の群は(同型の違いを除き)巡回群 Cp(あるいは加法的に書くならば Z/pZ)しかない[5]。
つづく

930:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/15 20:59:10.46 9ROe+Kvi.net
>>854
つづき
URLリンク(en.wikipedia.org)
Cyclic group
(抜粋)
Additional properties
If p is a prime number, then any group with p elements is isomorphic to the simple group Z/pZ. A number n is called a cyclic number if Z/nZ is the only group of order n, which is true exactly when gcd(n,φ(n)) = 1.[13]
The cyclic numbers include all primes, but some are composite such as 15. However, all cyclic numbers are odd except 2. The cyclic numbers are:
1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 123, 127, 131, 133, 137, 139, 141, 143, ... (sequence A003277 in the OEIS)
URLリンク(oeis.org)
The On-Line Encyclopedia of Integer Sequences
AUTHOR N. J. A. Sloane and Richard Stanley Last modified October 15 04:33 EDT 2019.
EXTENSIONS More terms from Christian G. Bower
A003277
Cyclic numbers: n such that n and phi(n) are relatively prime; also n such that there is just one group of order n, i.e., A000001(n) = 1.
(Formerly M0650) 65
1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, ・・
(list; graph; refs; listen; history; text; internal format)
(引用終り)
以上

931:Mara Papiyas
19/10/15 21:13:41.04 3uWjxYrs.net
>>854
馬鹿は乗法群 (Z/6Z)×を全然知らんようだwww
つまり
「円分体Q(ζn)のガロア群が乗法群(Z/nZ)×になる」
とはどういうことか、全然分かってないwww
そんな馬鹿が知ったかぶってガロア理論語るなよ
みっともないwwwwwww

932:Mara Papiyas
19/10/15 21:26:46.92 3uWjxYrs.net
>>853



933:>>たとえばZ/6Zにおける乗法可逆元の類は、1,5の2つのみ。 >そうそう、そうでした。 相槌打ってるけど全然分かってないな なんで0はともかく、2や3や4は入ってないのか それは 2×3=3×2=0 4×3=3×4=0 だから そもそも、馬鹿は 「なぜ円分体Q(ζn)のガロア群が  加法群(Z/nZ)でなく乗法群(Z/nZ)×なのか」 分かってないw 分かってたら 「1の5乗根の原始根 ζ5を添加する拡大から、位数5の巡回群が出る」 なんて馬鹿な間違いするわけがないw



934:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/15 21:51:54.40 9ROe+Kvi.net
>>849
>φ(5)=4だよ
>だいたい一般的にφ(n)=nにはならない
>pが素数のときφ(p)=p-1
そうそう、そうでした
昔読んだんだがね、十分理解できていないんだね(^^;
下記の”拡大体の基底に関する注意”ですね
「1+ζ + ...+ζ ^n-1=0 がなりたつため, ζ , ζ^2 ,..., ζ^n-1 と 1 は独立ではないのです
1 の n 乗根を添加するとき,拡大次数を間違わないように注意して下さい.」だな
URLリンク(hooktail.sub.jp)
1のn乗根 (Joh著) 物理のがきしっぽ
(抜粋)

Q に 1 の n 乗根 ζ を添加した拡大体を E とすると, [E:Q]=φ (n) がなりたちます.
さらにガロア群 G (E/Q) は Zn^xに同型となります.
拡大体の基底に関する注意
拡大体の次数について注意です. x^n-1 の解 ζ を使い,拡大体 Q(ζ) を考えます. Q(ζ) の元は,一般に a1ζ + a2ζ^2 +...+an-1ζ^n-1 と表わされ, Q 上のベクトル空間と見た場合には ζ , ζ^2 ,..., ζ^n-1 が基底を張ることになります.
あれ, 1 は基底に無いのでしょうか?要りません.
ベクトルの足し算だと思って図形的に考えればすぐに分かりますが, 1+ζ + ...+ζ ^n-1=0 がなりたつため, ζ , ζ^2 ,..., ζ^n-1 と 1 は独立ではないのです.
1 の n 乗根を添加するとき,拡大次数を間違わないように注意して下さい.
URLリンク(hooktail.sub.jp)
例えば 1 の五乗根. 1+ζ + ζ^2 +ζ^3 + ζ^4=0 となる.
(引用終り)

935:Mara Papiyas ◆y7fKJ8VsjM
19/10/15 22:06:56 3uWjxYrs.net
>>858
見当違いなことばかり書く馬鹿に質問だ

円分体の同型写像を具体的に構成せよ

936:
19/10/15 22:07:22 6wySpVJX.net
>>854
>オイラーのファイ関数
φ関数とは書きますけれども…普通、トーシェント関数ではないでしょうか

937:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/15 22:34:59.55 9ROe+Kvi.net
>>838
そうか
>>818の訂正版)
と訂正書いたけど、
最初の>>818で合っていたんだね
1のn乗根を添加の話
理解不十分で、記憶だけで書くから、だめなんだな
しっかり理解しておかないとね

938:Mara Papiyas ◆y7fKJ8VsjM
19/10/15 23:18:23 3uWjxYrs.net
>>859に答えられない馬鹿はガロア理論が全然理解できてないwww

939:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/15 23:51:26 9ROe+Kvi.net
>>860
C++さん、どうも。スレ主です。

>>オイラーのファイ関数
>φ関数とは書きますけれども…普通、トーシェント関数ではないでしょうか

最近は、トーシェント関数が普通かもしれませんが
以前は、”φ関数”だけで、”トーシェント関数”という呼び方は、あまり使われていなかったと思います
まあ、カナで”ファイ関数”という表記は珍しいですが、”物理のがきしっぽ”の記事なので、読者レベルを考えての表記でしょう
因みに、totientの命名は、Sylvester先生で、「Totidem」が由来とか
(参考)
URLリンク(detail.chiebukuro.yahoo.co.jp)
ame********さん2015/5/611:07:42 Yahoo
オイラーのtotient関数のtotientの意味はなんですか。
(抜粋)
totientの語源となるtotiensを調べてみたら、so oftenと書かれていました。
「とてもよくある関数」という訳であってますか?

ベストアンサーに選ばれた回答
bud********さん 2015/5/612:48:10
オイラーのtotient関数
のもとの問題
nのnより小さい互いに素な自然数の個数(Quot? How many )は
の答え が tot (so many) (totidem)
だから Joseph Sylvesterが造語で totient にした
しいて訳せば 個数関数 程度
(引用終り)

URLリンク(ejje.webli)(URLがNGなので、キーワードでググれ(^^ )
weblio
Wiktionary英語版での「Totidem」の意味
totidem
語源
From tot (“so many”) + -dem (“same”).
数詞
totidem (indeclinable)
1.just as many
2.just the same
3.all the same

つづく

940:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/15 23:55:08 9ROe+Kvi.net
>>863
つづき

Joseph Sylvester先生は、下記で行列を発明したことで有名です
URLリンク(en.wikipedia.org)
James Joseph Sylvester
(抜粋)
Legacy
Sylvester invented a great number of mathematical terms such as "matrix" (in 1850),[9] "graph" (combinatorics)[10] and "discriminant".[11] He coined the term "totient" for Euler's totient function φ(n).[12]

URLリンク(ja.wikipedia.org)
ジェームス・ジョセフ・シルベスター(James Joseph Sylvester, 1814年9月3日 - 1897年3月15日)は、イギリスの数学者。
1838年からユニヴァーシティ・カレッジ・ロンドン教授、1877年に渡米してジョンズ・ホプキンス大学教授、1883年からオックスフォード大学の幾何学の Savillian 教授を歴任した。1839年王立協会フェロー選出。
w:American Journal of Mathematicsを創刊。行列や組合せ数学の研究を中心に功績を残しシルベスター行列やシルベスターの慣性法則などに名を残している。
受賞歴
1861年 ロイヤル・メダル
1880年 コプリ・メダル
1887年 ド・モルガン・メダル
(引用終り)
以上

941:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/16 00:02:14 OrOarbJT.net
>>863

オイラーのφ関数は、最初に1が出たあとは、全部偶数なんですね(^^;
URLリンク(ja.wikipedia.org)
オイラーのφ関数
(抜粋)
オイラーのトーシェント関数(オイラーのトーシェントかんすう、英: Euler's totient function)とは、正の整数 n に対して、 n と互いに素である 1 以上 n 以下の自然数の個数 φ(n) を与える数論的関数 φ である。

1 から 20 までの値は以下の通りである。

1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8,…(オンライン整数列大辞典の数列 A000010)
1761年にレオンハルト・オイラーが発見したとされるが、それより数年前に日本の久留島義太が言及したとも言われる。

URLリンク(oeis.org)
The On-Line Encyclopedia of Integer Sequences!)
A000010 Euler totient function phi(n): count numbers <= n and prime to n. AUTHOR N. J. A. Sloane Last modified October 15 07:56 EDT 2019.
(抜粋)
(Formerly M0299 N0111) 2846
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8, 12, 10, 22, 8, 20, 12, 18, 12, 28, 8, 30, 16, 20, 16, 24, 12, 36, 18, 24, 16, 40, 12, 42, 20, 24, 22, 46, 16, 42, 20, 32, 24, 52, 18, 40, 24, 36, 28, 58, 16, 60, 30, 36, 32, 48, 20, 66, 32, 44 (list; graph; refs; listen; history; text; internal format)
(引用終り)
以上

942:132人目の素数さん
19/10/16 00:25:26.36 eqCH01Ub.net
オイラーのトーシェント関数
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, 8, 16, 6, 18, 8
をスレ主は筆算で確認できますか?

943:132人目の素数さん
19/10/16 00:33:45.99 eqCH01Ub.net
n=21のときのオイラーのトーシェント関数は
3,6,9,12,15,18,21

7,14,21
以外なので21-7-3+1=12
になります

944:132人目の素数さん
19/10/16 01:05:22.15 eqCH01Ub.net
オイラーのトーシェント関数とは
nに対し1からnまでの整数でnと互いに素であるような数の個数
です
n=21なら、1,2,4,5,8,10,11,13,15,17,19,21の12個になります
互いに素とは、二つの数の最大公約数が1であるということです

945:132人目の素数さん
19/10/16 01:06:14.10 eqCH01Ub.net
面白いですね

946:Mara Papiyas
19/10/16 05:18:59.85 /906omXv.net
馬鹿は円分体の同型写像を具体的に構成する宿題をやったか?
それともガロア理論諦めるか?
後者をすすめるぞ 貴様には向学心がないからな
次からスレタイ変えろよ みっともないぞw

947:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/16 07:44:43.92 OrOarbJT.net
>>866
ID:eqCH01Ubさん、どうも。スレ主です。
筆算でね(^^
出来ると思うよ、やらないけど
>>869
>面白いですね
面白いよね
φ(n)は、数論のいたるところに出てくるね(^^

948:Mara Papiyas
19/10/16 07:48:02.06 /906omXv.net
>>871
馬鹿、ガロア理論を諦めるwwwwwww

949:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/16 07:51:10.82 OrOarbJT.net
>>859
>円分体の同型写像を具体的に構成せよ
めんどくさいやつだな
そうあせるな(^^
円分体は、草場公邦のP131にあるよ
そこから、手でコピータイプしても良いが
それでは、みなさん面白くないでしょw(^^;
URLリンク(www.asakura.co.jp)
ガロワと方程式
A5変/192ページ/1989年07月10日
ISBN978-4-254-11467-6 C3341
草場公邦 著
(抜粋)
目次
6. ガロワの理論とその応用
 6.1 ガロワ拡大とガロワ群
URLリンク(hiroyukikojima)(URLがNGなので、キーワードでググれ(^^ )
hiroyukikojima’s blog
2008-03-27
ガロアの定理をわかりたいならば
(抜粋)
数学の本を書くのを生業としているぼくでさえ、「よくわかる」本と出会えることは滅多にない。そんな中、最近になって出会って、すばらしいと思っているのは草場公邦先生の本である。以下の三冊を読んだ。
ガロワと方程式 (すうがくぶっくす)
作者: 草場公邦
出版社/メーカー: 朝倉書店
発売日: 1989/07/01
メディア: 単行本
どれもすばらしいが、とりわけ最初の『ガロワと方程式』はめちゃめちゃいい。ガロア理論とは栄光なき天才たち - hiroyukikojimaの日記で紹介した二十歳で決闘で死んだ薄命の天才ガロアの生み出した理論である。
( ちなみにフランス語では、ガロワと発音するのが正しいらしく、草場先生はわざとそういう表記を使っているが、日本では一般にガロアが流布している) 。
つづく

950:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/16 07:51:58.49 OrOarbJT.net
>>873
つづき
これは、「5次以上の方程式には解の公式が存在しない」ということを証明するために編み出された理論であり、現代代数の先駆けとなったスゴモノである。(ちなみに誤解を最小限にするために言っておくと、何次方程式でも必ず複素数の解を持っている。
問題は、それをオートマチックに求める公式があるかどうかであり、5次以上にはそういう便利な公式がない、というのがガロアの定理なのである) 。
ぼくは、数学科のときは代数を専攻したので、ガロア理論は必須の道具であり、一生懸命勉強したのだけど、最終的に「身体でわかった!」というところにたどり着くことができなかった。
おおざっぱには捉えることはできたんだけど、機微が掴めておらず、少なくとも「アタリマエ」になるほどには理解していなかったのである。( そんなだから数学の道に挫折することになったのだけどね)。
ところが、最近になってこの『ガロワと方程式』を読んで、急に視界が開け、「アタリマエ」とまではいわないけど、「よくできた自然な理論だなあ」というところまで理解できるようになってしまったのだ。
数学科で勉強していた頃から見れば、もう四半世紀も過ぎて達した境�


951:nというのもスゴイやら情けないやらである。 (引用終り) つづく



952:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/16 07:54:22.35 OrOarbJT.net
>>874
つづき
(Brent Everitt先生、これお薦めです。カラーの絵が豊富で分り易い。(練習問題の解答が無くなっているね(^^ ))
URLリンク(arxiv.org)
Galois Theory - a first course
Brent Everitt
(Submitted on 12 Apr 2018)
These notes are a self-contained introduction to Galois theory, designed for the student who has done a first course in abstract algebra.
URLリンク(arxiv.org)
ここで、円分体そのものじゃないけど、
方程式x^5 ? 2=0のガロア群の絵解きがあるんだ。殆どこれで尽くされているね
イントロの部分で、”0. What is Galois Theory?”の章があって、
P7 (0.8)
A pentagon has 10 geometric symmetries, and you can check that all arise as symmetries of
the roots of x^5 ? 2 using the same reasoning as in the previous example. But this reasoning also
gives a symmetry that moves the vertices of the pentagon according to:
図略
This is not a geometrical symmetry ? if it was, it would be pretty disastrous for the poor pentagon.
Later we will see that for p > 2 a prime number, the solutions to xp ?2 = 0 have p(p?1) symmetries.
(引用終り)
とある
これの詳しい記述が本文にある
(なお、下記こちらは、過去スレでも紹介した2007版で古いけど、内容はほぼ同じで、最後に練習問題の解答が付いているよ(^^ )
URLリンク(www-users.york.ac.uk)
Symmetries of Equations: An Introduction
to Galois Theory
Brent Everitt, version 1.12, December 19, 2007.
Department of Mathematics, University of York, York
以上

953:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/16 07:56:56.80 OrOarbJT.net
>>875 文字化け訂正
x^5 ? 2
 ↓
x^5 - 2
などね
-の記号が、多分コードが違うので、目では見分けが付かず、この板では文字化けするんだ(^^;

954:Mara Papiyas
19/10/16 07:57:56.00 /906omXv.net
>>873-875
馬鹿は、文章を読まずにコピペして誤魔化すから
いつまでたっても書いてあることが理解できないw
別に草場の本なんか見なくてもネットにもあるぞ
それ読め と・に・か・く・よ・め

955:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/16 11:37:55.07 86h80x0A.net
めんどくさいやつだな
そうあせるな(^^
円分体って、単純そうで、結構深いよね(゜ロ゜;
”クロネッカー=ウェーバーの定理は、基礎体が有理数体であるときを考えているが、基礎体を虚二次体にしたときも、同様なことが成立するかを問うたのが、クロネッカーの青春の夢である。”
(参考)
URLリンク(ja.wikipedia.org)
クロネッカー・ウェーバーの定理
(抜粋)
代数的整数論において、すべての円分体は有理数体 Q のアーベル拡大であることが示せる。
クロネッカー・ウェーバーの定理 (Kronecker?Weber theorem) は、この逆を部分的に与えるもので、Q のアーベル拡大体はある円分体に含まれるという定理である。
言い換えると、有理数体上の拡大体でそのガロア群がアーベル群である体に含まれる代数的整数は、1の冪根の有理係数による和として表すことができる。例えば、
√5=e^


956:2πi/5-e^4πi/5-e^6πi/5+e^8πi/5√5 = e^2πi/5 - e^4πi/5 - e^6πi/5 + e^8πi/5 である。 この定理の名前はレオポルト・クロネッカー (Leopold Kronecker) とハインリッヒ・マルチン・ウェーバー(英語版) (Heinrich Martin Weber) に因んでいる。 体論的定式化 クロネッカー・ウェーバーの定理は、体と体の拡大のことばで記述することができる。 それは、有理数体 Q の有限アーベル拡大は、ある円分体の部分体であるという定理である。 つまり、Q 上のガロア群がアーベル群である代数体は、ある1のべき根を有理数体Qに添加して得られる体の部分体である。 Q のアーベル拡大 K が与えられると、K を含む最小な円分体が存在する。 この定理によって、K の導手 n を 1 の n 乗根により生成される体に K が含まれるような最小の整数 n として定義できる。 例えば、二次体の導手は、それらの判別式(英語版)の絶対値であり、これは類体論で一般化される事実である。 つづく



957:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/16 11:38:48.56 86h80x0A.net
>>878
つづき
URLリンク(en.wikipedia.org)
Kronecker?Weber theorem
(抜粋)
In algebraic number theory,
it can be shown that every cyclotomic field is an abelian extension of the rational number field Q,
having Galois group of the form (Z/nZ )^x .
The Kronecker?Weber theorem provides a partial converse: every finite abelian extension of Q is contained within some cyclotomic field.
In other words, every algebraic integer whose Galois group is abelian can be expressed as a sum of roots of unity with rational coefficients.
For example,
√5=e^2πi/5-e^4πi/5-e^6πi/5+e^8πi/5,
√5=e^2πi/5-e^4πi/5-e^6πi/5+e^8πi/5,
√-3=e^2πi/3-e^4πi/3,√-3=e^2πi/3-e^4πi/3, and
√3=e^2πi/12-e^10πi/12.√3=e^2πi/12-e^10πi/12.
The theorem is named after Leopold Kronecker and Heinrich Martin Weber.
(引用終り)
以上

958:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/16 15:16:36.16 86h80x0A.net
めんどくさいやつだな
そうあせるな(^^
円分体って、単純そうで、結構深いよね(゜ロ゜;
乗法群、Group scheme of roots of unity (^^
URLリンク(ja.wikipedia.org)
乗法群
(抜粋)
数学と群論において、用語乗法群 (multiplicative group) は次の概念の1つを意味する:
・体、環、あるいはその演算の 1 つとして乗法をもつ他の構造の、可逆元が乗法の下でなす群[1]。体 F の場合には、群は {F ? {0}, ?} である、ただし 0 は F の零元であり二項演算 ? は体の乗法である。
・代数的トーラス(英語版) GL(1).
1 の冪根の群スキーム
1の n 乗根の群スキーム (group scheme of n-th roots of unity) は定義によって群スキーム(英語版)と考えて乗法群 GL(1) への n ベキ写像の核である。

n を法とする整数の乗法群(英語版)は群Z/nZの可逆元が乗法についてなす群である。
n が素数でないとき、0 の他に可逆でない元が存在する。
つづく

959:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/16 15:17:21.67 86h80x0A.net
>>880
つづき
URLリンク(en.wikipedia.org)
Multiplicative group
(抜粋)
In mathematics and group theory, the term multiplicative group refers to one of the following concepts:
・the group under multiplication of the invertible elements of a field,[1] ring, or other structure for which one of its operations is referred to as multiplication.
 In the case of a field F, the group is (F ? {0}, ?), where 0 refers to theZero element of F and the binary operation ? is the field multiplication,
・the algebraic torus GL(1).
Examples
・The multiplicative group of integers modulo n is the group under multiplication of the invertible elements of Z/nZ . When n is not prime, there are elements other thanZero that are not invertible.
・The multiplicative group of a field F}F is the set of all nonzero elements: F^x=F-{0}, under the multiplication operation.
 If F is finite of order q (for example q = p a prime, and F= Fp=Z/pZ), then the multiplicative group is cyclic: F^x =~ C_{q-1}.
Group scheme of roots of unity


960: The group scheme of n-th roots of unity is by definition the kernel of the n-power map on the multiplicative group GL(1), considered as a group scheme. つづく



961:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/16 15:18:31.30 86h80x0A.net
>>881
つづき
URLリンク(en.wikipedia.org)
Group scheme
(抜粋)
Group schemes that are not algebraic groups play a significant role in arithmetic geometry and algebraic topology, since they come up in contexts of Galois representations and moduli problems.
The initial development of the theory of group schemes was due to Alexander Grothendieck, Michel Raynaud and Michel Demazure in the early 1960s.
Examples
・The multiplicative group Gm has the punctured affine line as its underlying scheme, and as a functor, it sends an S-scheme T to the multiplicative group of invertible global sections of the structure sheaf.
 Algebraic tori form an important class of commutative group schemes, defined either by the property of being locally on S a product of copies of Gm, or as groups of multiplicative type associated to finitely generated free abelian groups.
・For any positive integer n, the group μn is the kernel of the nth power map from Gm to itself. As a functor, it sends any S-scheme T to the group of global sections f of T such that fn = 1.
 Over an affine base such as Spec A, it is the spectrum of A[x]/(x^n?1). If n is not invertible in the base, then this scheme is not smooth. In particular, over a field of characteristic p, μp is not smooth.
(引用終り)
以上

962:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/16 16:11:19 86h80x0A.net
めんどくさいやつだな
そうあせるな(^^

円分体って、単純そうで、結構深いよね(゜ロ゜;

位数4の群は、確か二つしかない
位数4の巡回群とクライン群と

下記(後述)の「位数 30 以下の群の分類」
P3 より、C4, C2 x C2(クライン群) の二つ

 >>873に関係しているのは、C4の方ですね(^^

URLリンク(ja.wikipedia.org)
クラインの四元群
(抜粋)
クラインの四元群とは、巡回群でない位数が最小の群である。また、位数2の巡回群の直積と同型である。
クラインの四群元の単位元以外の元の位数は、2である。
交代群 A4 の正規部分群
V = < identity, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) >
と同型。
URLリンク(en.wikipedia.org)
Klein four-group
(抜粋)
Contents
1 Presentations
2 Geometry
3 Permutation representation
4 Algebra
5 Graph theory
6 Music
7 See also

つづく

963:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/16 16:15:37 86h80x0A.net
>>883


つづき

(参考:方程式のガロア理論に役立ちそうなPDF見繕い)
URLリンク(www.isc.meiji.ac.jp)
Kazuhiko KURANO Department of Mathematics School of Science and Technology Meiji University
URLリンク(www.isc.meiji.ac.jp)
研究室の学生の卒業論文・修士論文・博士論文
URLリンク(www.isc.meiji.ac.jp)
2004 年度卒業研究 位数 30 以下の群の分類
URLリンク(www.isc.meiji.ac.jp)
2007 年度卒業研究 5次方程式
URLリンク(www.isc.meiji.ac.jp)
2008 年度卒業研究 S_3, S_4, S_5 の部分群の分類
URLリンク(www.isc.meiji.ac.jp)
2014 年度卒業研究 S_6 の部分群の分類

URLリンク(mathematics-pdf.com)
MATHEMATICS.PDF よしいず
URLリンク(mathematics-pdf.com)
小さい位数の群の分類(131KB, 13/08/19) MATHEMATICS.PDF よしいず
(注;いま見ると、これ、上記の明治大 「2004 年度卒業研究 位数 30 以下の群の分類」に似ているね。まあ、だれが書いても似たようなものかも知れない。というか、「2004 年度卒業研究」にも種本があって、お互いその種本を見ている可能性もあるな(^^ )
以上

964:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/16 16:31:44


965:.62 ID:86h80x0A.net



966:132人目の素数さん
19/10/16 18:37:36 z0qt+ZiN.net
演習で「位数200以下の単純群をすべて挙げよ」という問題があった
「168の時はアレだけに限られる」が難しくて、次の週までに解けなかった思い出

967:Mara Papiyas ◆y7fKJ8VsjM
19/10/16 19:22:24 /906omXv.net
>>878
>めんどくさいやつだな

学習がめんどくさいなら、数学やめていいぞ
誰も貴様に数学やれなんて頼んでないから

>そうあせるな

あせって>>839
>1の5乗根の原始根 ζ5を添加する拡大から、位数5の巡回群が出る
と馬鹿丸出しな間違い書いたのは貴様www

>代数的整数論において、すべての円分体は有理数体 Q のアーベル拡大であることが示せる。
>クロネッカー・ウェーバーの定理 (Kronecker-Weber theorem) は、この逆を部分的に与えるもので、
>Q のアーベル拡大体はある円分体に含まれるという定理である。

なんで、尋ねられたことを調べずに
無関係なことを書くのかね?

>>859で、何て書いた?

「円分体の同型写像を具体的に構成せよ」
だよね?

もし、この質問に答えられるなら、
「1の5乗根の原始根 ζ5を添加する拡大から、位数5の巡回群が出る」
なんて書くことはあり得ない
だから訊ねてるんだよ

まっさきに尋ねられたことを調べろよ 馬鹿

968:Mara Papiyas ◆y7fKJ8VsjM
19/10/16 19:23:12 /906omXv.net
>>880
>乗法群

今ごろそんなの調べてるの?w

貴様、今迄いったい何やってたんだ?w

>n を法とする整数の乗法群(英語版)は群Z/nZの可逆元が乗法についてなす群である。
>n が素数でないとき、0 の他に可逆でない元が存在する。

「可逆」の意味、分かってるか?

逆元があるってことだぞw

なんかこいつ基本的なことが全然わかってねぇなw

>>881-882
また全然関係ねぇこと調べてるし

貴様ほんと馬鹿だなw

969:Mara Papiyas
19/10/16 19:25:00.44 /906omXv.net
>>883-885
貴様、検索もロクにできないのか?
「円分体」「同型写像」のキーワードで
google検索かけたら速攻で見つかったぞwww
■美的数学のすすめ(はてなブログ)
 円分体のガロア群
「Q(ζn)/Qの自己同型をσとすると、
 σ(ζn)は円分多項式Φn(x)=0の解となりますので、
 σ(ζn)=ζn^i (i∈(Z/nZ)×)と表せます。
 
 逆にi∈(Z/nZ)×に対してσiをσi(ζn)=ζn^iとすると
 σiはQ(ζn)/Qの自己同型を導くことが分かります。」
読め この馬鹿がw

970:Mara Papiyas
19/10/16 19:49:19.28 /906omXv.net
大体、馬鹿は自分が検索した論文も読んでないだろw
「S_3, S_4, S_5 の部分群の分類」のところで
S_5の位数20の部分群も出てるぞ
(12345), (2354) が生成群だから
部分群に位数5と位数4の巡回群がある

971:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/16 20:48:59.29 OrOarbJT.net
>>886
ID:z0qt+ZiN さん、どうも。スレ主です。
>演習で「位数200以下の単純群をすべて挙げよ」という問題があった
>「168の時はアレだけに限られる」が難しくて、次の週までに解けなかった思い出
えー
明治大 蔵野研では、位数30までで、学部卒業研究だとか
それが、演習で「位数200以下の単純群をすべて挙げよ」か
びつくりです(^^;

972:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/16 21:36:24 OrOarbJT.net
>>891
>「168の時はアレだけに限られる」

これか
URLリンク(ja.wikipedia.org)
168
(抜粋)
・168 は合成数であり、約数は 1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84 と 168 である。
・位数2の射影平面の自己同型群は位数168の単純群である。この群は5次の交代群に次いで位数の小さい単純群である。

URLリンク(ja.wikipedia.org)
射影平面
(抜粋)
有限位数の存在
射影平面の分類は全然終わっていない。いくつかの結果を位数の順に以下に示す。
・7 : 全て PG(2,7) に同型

URLリンク(ja.wikipedia.org)(2,_7)
PSL(2, 7)
(抜粋)
射影特殊線型群PSL2(7) は、代数学、幾何学、数論といった分野で重要な役割を持つ有限単純群である。
PSL2(7)はクラインの平面4次曲線(英語版)の自己同型群と同型で、またファノ平面の対称性の群(英語版)とも同型である。
位数168の単純群はPSL2(7)と同型であり、位数60の交代群A5(PSL2(4)、PSL2(5)、正二十面体群と同型。)に次いで2番目に小さな非可換単純群である。
性質
PSL2(7)は168個の要素を持つ。これは行列の取り得る列の数を数え上げることで確認できる。

URLリンク(w.atwiki.jp)
warawanu @ ウィキ
位数168単純群の一意性
(抜粋)
Gを位数168の単純群とする。 Gのシロー7群は8個,シロー3群は7個か28個である。位数21の元があればシロー2群が唯一になってしまう。
3群が7個では7群の正規化群が唯一,7群も唯一になってしまう。3群は28個である。位数6の元があればシロー2群が唯一になってしまう。以上により,位数7の元は48個,位数3の元は56個,位数2冪の元は残る63個である。

位数2冪の元が63個であるから,21個のシロー2群の内に自明でなく交わるものがある。その交わりCの正規化群について考える。
|NG(C)|は4より大きい4の倍数であるが,|NG(C)|=12は3群の正規化群の位数によって否定され,|NG(C)|=28と|NG(C)|=56は7群の正規化群の位数によって否定される。
結局,NG(C)は4次の対称群S4に同型であり,シロー2群は二面体群,シロー2群の交わりCは四元群である。

メモ
位数4が42個,位数2が21個,また,GからA7への準同型単射がある。

973:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/16 21:42:34.66 OrOarbJT.net
>>887
そうあせるな
おれは楽しんでいるんだ
円分体ねー
深いねー
円分体の深みを再認識しているんだよ
あんたの質問の答え
もう答えは出ているでしょ(^^
 >>873-875とか
分かってないね

974:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/16 21:57:25 OrOarbJT.net
>>890
(引用開始)
「S_3, S_4, S_5 の部分群の分類」のところで
S_5の位数20の部分群も出てるぞ
(12345), (2354) が生成群だから
部分群に位数5と位数4の巡回群がある
(引用終り)

その議論はちょっと違うと思うよ
おまえ、なんか勘違いしていると思うよ

おまえ、>>849にも似たことを書いていたね(下記)
(>>849より引用開始)
>全体では、位数5の巡回群と位数5の巡回群の直積の群で、位数25の群
全体では、位数20の群ね
だいたい、25が120(5次の対称群S5の位数)の約数でない
時点でおかしいって気づけよw
(引用終り)

方程式のガロア群では、普通は基礎体はQに必要な1のベキ根は全て添加されているとして、議論を進める
そうすると、二項方程式 X^5-a=0 が既約として、この方程式のガロア群は、位数5の巡回群になると議論を単純化できる
この場合、群の位数は20ではない

 >>890で、S_5 の部分群に位数20の部分群が存在することと



975:齦禔A基礎体Qに、1のベキ根が含まれていないときに、 二項方程式 X^5-a=0 のガロア群が位数20の群になることとは 別の議論だよ



976:Mara Papiyas
19/10/16 22:26:11.14 /906omXv.net
>>893
>おれは楽しんでいるんだ
間違うことを?w
>円分体の深みを再認識しているんだよ
「1の5乗根の原始根 ζ5を添加する拡大から、位数5の巡回群が出る」
とかほざいた馬鹿が?wwwwwww

977:Mara Papiyas
19/10/16 22:31:22.53 /906omXv.net
>>894
>二項方程式 X^5-a=0 が既約として、
>この方程式のガロア群は、位数5の巡回群になる
>と議論を単純化できる
そりゃ基礎体を円分体とした場合だろ?
基礎体がQだったらどうだい?
>方程式のガロア群では、普通は基礎体は
>Qに必要な1のベキ根は全て添加されているとして、
>議論を進める
おまえ、クンマー拡大も知らない馬鹿なのか?w

978:Mara Papiyas
19/10/16 22:34:54.76 /906omXv.net
URLリンク(ja.wikipedia.org)クンマー理論
「クンマー拡大(Kummer extension)とは、
 ある与えられた整数 n に対し
 次の条件を満たすような
 体の拡大 L/K のことを言う。
 ・K は、n 個の異なる1のn乗根(つまり、Xn-1 の根)を含む。
 ・L/K はexponent n の可換ガロア群を持つ。」

979:Mara Papiyas
19/10/16 22:41:13.04 /906omXv.net
>>894
>その議論はちょっと違うと思うよ
>おまえ、なんか勘違いしていると思うよ
「と思う」お前が気違い
馬鹿の上に、妄想狂か?www

980:Mara Papiyas
19/10/16 22:46:38.35 /906omXv.net
X^5-1はQ上の既約多項式ではない
なぜなら以下のように因数分解できるから
(x-1)(x^4+x^3+x^2+x+1)
そして円分多項式φ5は
x^4+x^3+x^2+x+1
である

981:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/16 23:29:32.47 OrOarbJT.net
>>889
(引用開始)
「Q(ζn)/Qの自己同型をσとすると、
 σ(ζn)は円分多項式Φn(x)=0の解となりますので、
 σ(ζn)=ζn^i (i∈(Z/nZ)×)と表せます。
 逆にi∈(Z/nZ)×に対してσiをσi(ζn)=ζn^iとすると
 σiはQ(ζn)/Qの自己同型を導くことが分かります。」
(引用終り)
??
 >>858より
(引用開始)
URLリンク(hooktail.sub.jp)
1のn乗根 (Joh著) 物理のがきしっぽ
(抜粋)

Q に 1 の n 乗根 ζ を添加した拡大体を E とすると, [E:Q]=φ (n) がなりたちます.
さらにガロア群 G (E/Q) は Zn^xに同型となります.
(引用終り)
これと何が違う?(゜ロ゜;
全文引用していないが、リンク先の全文を読んでみな(^^;

982:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/16 23:51:19.94 OrOarbJT.net
>>896-897
なにを狼狽して誤魔化そうとしているんだ??w(^^;
 >>890より
(引用開始)
「S_3, S_4, S_5 の部分群の分類」のところで
S_5の位数20の部分群も出てるぞ
(12345), (2354) が生成群だから
部分群に位数5と位数4の巡回群がある
(引用終り)
この「S_5の位数20の部分群 (12345)x(2354)」は
 >>805に書いておいたが、べき根で可解な既約5次方程式での最大の群だよ
この5次方程式は、二項方程式ではない
「可解な5次方程式について - 兵庫教育大学 大迎規宏 著 -修士論文 2003」を読んでみな
因みに、この話は、Coxのガロア本(訳本あるよ)や、エムポストニコフにもある
URLリンク(repository.hyogo-u.ac.jp)
PDF 可解な5次方程式について - 兵庫教育大学 大迎規宏 著 -修士論文 2003
URLリンク(njet.oops.jp)
SUKARABE'S EASY LIVING
2009年2月21日 (土) 投稿者: SUKARABE
David Cox のガロア理論の本
(抜粋)
さすが Cox である。期待を裏切らないねえ?。
URLリンク(bluexlab.tokyo)
2018.06.22MATH
整数論・数論の教科書で「名著」と呼ばれるものをご紹介 Written by Soichiro OMI bluexlab
(抜粋)
Galois Theory (Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts)?David A. Cox 著
Coxによるガロア理論の教科書です。600ページを超える大著ですが、扱っている内容はそこまで難しいものではありません。
各節の終わりには「Historical Notes」が記載されており、理論の


983:歴史的背景も学ぶことができます。 http://webcatplus.nii.ac.jp/webcatplus/details/book/277149.html Webcat Plus ガロアの理論 エム・ポストニコフ 著 ; 日野寛三 訳 (抜粋) 出版元 東京図書 刊行年月 1964 7. 根号で解かれる5次方程式 / p153



984:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/17 00:04:00.96 khSgay+Z.net
>>901
たしか、下記「第14章 可解置換群」がそうだったと思うよ
いや、書棚に本はあるけど、確認が面倒なんで、記憶で書くけど(^^
URLリンク(www.nippyo.co.jp)
ガロワ理論(下)
デイヴィッド・A. コックス 著 梶原 健 訳
発刊年月 2010.09
日本評論社
第4部 さらに続く話題
 第14章 可解置換群
(引用終り)
因みに、ガロア第一論文の最後の定理が
「可解な5次方程式」についての定理(ガロア群による判別)なんだよねw(^^

985:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/17 00:12:02.89 khSgay+Z.net
>>901 追加
確か、元吉文男さん、参考文献に、エム・ポストニコフをあげていたね(^^
URLリンク(www.kurims.kyoto-u.ac.jp)
[PDF]5 次方程式の可解性の高速判定法 - 元吉文男 著 - ?1993 RIMS, Kyoto University
URLリンク(peng225.hate)(URLがNGなので、キーワードでググれ(^^ )
ペンギンは空を飛ぶ
2018-03-07
5次方程式の解を巡る旅 ?5次方程式の可解性判定編?
(抜粋)
Galois理論
前回の記事で3次・4次方程式のresolventについて説明した。本稿ではここまでの内容を総括し、5次方程式の可解性判定について述べる。
5次方程式の可解性判定
5次方程式のresolvent

986:132人目の素数さん
19/10/17 00:29:36.30 rXxqe236.net
>この「S_5の位数20の部分群 (12345)x(2354)」は
> >>805に書いておいたが、べき根で可解な既約5次方程式での最大の群だよ
>この5次方程式は、二項方程式ではない
x^3-2=0 という方程式のQ上のガロア群はS_3だが
1の3乗根を添加した体上ではC_3に縮小する。
一般3次方程式のガロア群はS_3だが
1の3乗根を添加してもS_3のまま。
しかし、べき根解法には1の3乗根は必要。
この話の類似が5次の場合にもあるんじゃないかな。
つまり、位数20のガロア群をもつ5次方程式は一般的には二項方程式ではないが
Mara Papiyasが言うように二項方程式になるケースもある。

987:132人目の素数さん
19/10/17 00:31:32.62 rXxqe236.net
失礼。
Mara Papiyas氏が言うように

988:Mara Papiyas
19/10/17 05:27:10.76 448PbhX4.net
>>900
>??
貴様は肝心なところを読んでない
自己同型! なぜ読まない?
貴様の引用したHPにもチャンと
同型写像について書かれてる
なぜ引用しない? 馬鹿かw

989:Mara Papiyas
19/10/17 05:31:26.58 448PbhX4.net
>>904
1の5乗根を追加した体を基礎体としても
ガロア群がF_20となる場合がいかなるものか
についてはハイレベル数学人に任せるw
私の目的はあくまで馬鹿のローレベルな間違いを指摘することにあるw

990:Mara Papiyas ◆y7fKJ8VsjM
19/10/17 05:35:43 448PbhX4.net
馬鹿はウマに食わせるほど数学書を買っても
ロクに読みもせず、読んだとしても
結果を覚えるだけで証明の論理を追わないから
いつまでたっても数学が理解できない

悪いことは云わない 数学は諦めろ
数学書はみな売っちまえ
貴様がやるべきことは断捨離だw

991:Mara Papiyas
19/10/17 06:14:32.44 448PbhX4.net
円分拡大の自己同型
原始5乗根をζで表す
同型写像として^2をとる
ζ、ζ^2、ζ^3、ζ^4
↓^2
ζ^2、ζ^4、ζ^6=ζ、ζ^8=ζ^3
↓^2
ζ^4、ζ^3、ζ^2、ζ
↓^2
ζ^3、ζ、ζ^4、ζ^2
↓^2
ζ、ζ^2、ζ^3、ζ^4
逆写像は^3
ζ、ζ^2、ζ^3、ζ^4
↓^3
ζ^3、ζ^6=ζ、ζ^9=ζ^4、ζ^12=ζ^2
↓^3
ζ^4、ζ^3、ζ^2、ζ
↓^3
ζ^2、ζ^4、ζ、ζ^3
↓^3
ζ、ζ^2、ζ^3、ζ^4
ちなみに^4は、自身が逆写像でもある
ζ、ζ^2、ζ^3、ζ^4
↓^4
ζ^4、ζ^8=ζ^3、ζ^12=ζ^2、ζ^16=ζ
↓^4
ζ、ζ^2、ζ^3、ζ^4
もちろん^1(恒等写像)は単位元

992:Mara Papiyas
19/10/17 06:21:34.68 448PbhX4.net
些細なことですが
>>905
氏はつけなくてもいいよ
例えば数学者について述べるとき、いちいち氏はつけないが
それを無礼だと咎める人はまあいない
私は別に数学者ではないが、名前に関しては
数学の慣習に沿って語っていただいて全然かまわない

993:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/17 07:09:38.23 khSgay+Z.net
>>904
ID:rXxqe236さん、どうも。スレ主です。
レスありがとう(^^
(引用開始)
>この「S_5の位数20の部分群 (12345)x(2354)」は
> >>805に書いておいたが、べき根で可解な既約5次方程式での最大の群だよ
>この5次方程式は、二項方程式ではない
x^3-2=0 という方程式のQ上のガロア群はS_3だが
1の3乗根を添加した体上ではC_3に縮小する。
一般3次方程式のガロア群はS_3だが
1の3乗根を添加してもS_3のまま。
しかし、べき根解法には1の3乗根は必要。
この話の類似が5次の場合にもあるんじゃないかな。
つまり、位数20のガロア群をもつ5次方程式は一般的には二項方程式ではないが
Mara Papiyasが言うように二項方程式になるケースもある。
(引用終り)
この話は、基礎体をQとして、Qに必要なベキ根を添加した体をQ’として
ベキ根を添加した体Q’をベースに、方程式のガロア群を考えるのが、ベキ根拡大の基本です
詳しくは、下記を
繰返すが、下記「クンマー拡大は巡回拡大でその拡大次数は n の約数である」をいうためには、
「K が 1 の原始 n 乗根を含む拡大体 K(α)」が必須ってことです
(参考)
URLリンク(ja.wikipedia.org)
冪根
(抜粋)
目次
4 冪根拡大
冪根拡大
K を体とし、a ∈ K の任意の 1 つの冪根 α = n√a を添加する拡大 K(α)/K を K の冪根拡大 (radical extension) という。
もし K が 1 の原始 n 乗根を含むなら拡大体 K(α) は二項多項式 x^n - a の最小分解体となり、この二項多項式は重根を持たないので拡大はガロア拡大となる。
これをクンマー拡大 (Kummer extension) と呼ぶ。
クンマー拡大は巡回拡大でその拡大次数は n の約数である。
逆に n の約数 d に対し、拡大次数が d であるような巡回拡大 L/K は、K が 1 の原始 n 乗根を含むという仮定の下で、クンマー拡大である。
このことから、ある方程式が係数に対して四則演算と冪根を添加する操作を有限回繰り返すことで解ける(代数的に可解である)ならば、ガロア群は巡回群のみからなる組成列を持たなければならないことになる。
この性質は、抽象群に対して可解群の概念として定式化される。

994:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/17 07:37:43 khSgay+Z.net
>>909
ぱち ぱち ぱち、拍手!
ご苦労さんw(^^;

さて、じゃおれも
(>>858より 下記”1のn乗根 (Joh著)”から)
「Q 上のベクトル空間と見た場合には ζ , ζ^2 ,..., ζ^n-1 が基底を張ることになります.
あれ, 1 は基底に無いのでしょうか?要りません.」
の話において

「1+ζ + ...+ζ ^n-1=0 がなりたつため, ζ , ζ^2 ,..., ζ^n-1 と 1 は独立ではないのです.」
は、ベクトル空間の基底で”1は不要”の話は、”1”みならず、任意のζ^m (1<=m<=n-1)の1つを基底から外すことが可能
(∵ 1+ζ + ...+ζ ^n-1=0で、一次従属なので、どれでも1つを外すことが可能)

よって、群を考えるときは、単位元が欲しいので、
最上位のζ ^n-1を外して
”1 , ζ , ζ^2 ,..., ζ^n-2 とn-1個 が基底を張る”とすれば、
クンマー拡大の巡回拡大(>>911)と同じ議論に乗ります (^^

(参考)
URLリンク(hooktail.sub.jp)
1のn乗根 (Joh著) 物理のがきしっぽ
(抜粋)

Q に 1 の n 乗根 ζ を添加した拡大体を E とすると, [E:Q]=φ (n) がなりたちます.
さらにガロア群 G (E/Q) は Zn^xに同型となります.

拡大体の基底に関する注意
拡大体の次数について注意です. x^n-1 の解 ζ を使い,拡大体 Q(ζ) を考えます. Q(ζ) の元は,一般に a1ζ + a2ζ^2 +...+an-1ζ^n-1 と表わされ, Q 上のベクトル空間と見た場合には ζ , ζ^2 ,..., ζ^n-1 が基底を張ることになります.
あれ, 1 は基底に無いのでしょうか?要りません.
ベクトルの足し算だと思って図形的に考えればすぐに分かりますが, 1+ζ + ...+ζ ^n-1=0 がなりたつため, ζ , ζ^2 ,..., ζ^n-1 と 1 は独立ではないのです.
1 の n 乗根を添加するとき,拡大次数を間違わないように注意して下さい.

URLリンク(hooktail.sub.jp)
例えば 1 の五乗根. 1+ζ + ζ^2 +ζ^3 + ζ^4=0 となる.
(引用終り)

995:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/17 07:47:58 khSgay+Z.net
>>912
> 1+ζ + ...+ζ ^n-1=0

これは、二項方程式 x^n - 1=0
で、
下記の根と係数の関係を適用すると
上記の方程式のn-1次の項が0であることから
導かれるね

URLリンク(ja.wikipedia.org)


996:%82%E6%95%B0%E3%81%AE%E9%96%A2%E4%BF%82 根と係数の関係 (抜粋) 根と係数の関係 n 個の文字 α1, α2, ..., αn に関する p 次基本対称式を s p(α1, α2, ..., αn) あるいは単に sn,p とする。 例えば sn,1 = α1 + α2 + … + αn,  ・  ・ sn,n = α1α2… αn. x に関する n 次式 anx^n + an?1x^n?1 + … + a1x + a0 の根が α1, α2, ..., αn であるとき、 sn,n-k=(-1)^{n-k}・ak/an (k = 0, 2, ..., n ? 1)が成り立つ。これを多項式の根と係数の関係という。



997:
19/10/17 08:05:51 rXxqe236.net
>>912
ご参考にされてるHPは混乱してるのか、間違ったことも混じって書いてありますね。
定理として書いてある
「ζ=exp(2πi/n)の最小多項式は{1,ζ,ζ^2,...,ζ^{n-1}}の全てを解として持ちます.」
は明確に誤り。最小多項式の次数はφ(n)次なので、φ(n)個しか根を持ちえません。
(最小多項式)≠x^n-1 です。
あと、ζ,ζ^2,...,ζ^{n-1}が基底をなすように書いてありますが、これも素数でないnに対しては誤り。
Q上のベクトル空間としての次元もφ(n)なので、基底の個数もφ(n)個です。

998:132人目の素数さん
19/10/17 08:11:30.07 rXxqe236.net
Mara Papiyasさんも勉強しながら書かれてる感じですが、スレ主さんとは違って
自分の頭を通して書いているなというのが分かります。
「アーベル群とアーベル群の直積はアーベル群にしかならないだろう」
とか、数学徒であれば誰でも気づくツッコミも入れてきます。
まえもそうでしたが、スレ主さんにはどうも半直積の概念がないように思えます。

999:132人目の素数さん
19/10/17 08:25:40.83 rXxqe236.net
何年間もガロア理論を勉強されてきて、ネット上のどこにどんな文書があったか
どの本にどんな項目があったかとかの知識はありますが
まとまった理論が頭の中に構築されている感じがしません。失礼ながら。
HPなどは間違った記述も多いので、やはり自分の頭を通して
徹底的に考えなければ、正誤の判断は付かないし、身にも付かないものだと思います。

1000:132人目の素数さん
19/10/17 08:41:51.22 rXxqe236.net
>>913
1+ζ + ...+ζ ^n-1=0 の証明
S=1+ζ + ...+ζ ^n-1にζを掛けると巡回的に項がずれるが和としては不変であることが観察できる。
すなわち、S=ζS.
 (1-ζ)S=0 で、1-ζ≠0 より S=0.

1001:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/17 10:15:30 CX/otP+s.net
>>903 追加

下記元吉文男で、
既約な二項方程式x^5-a=0のガロア群は、C_{5} 巡回群 (位数 5)です
B_{5}'メタ巡回群 (位数 20)では、ありません
URLリンク(www.kurims.kyoto-u.ac.jp)
[PDF]5 次方程式の可解性の高速判定法 - 元吉文男 著 - 1993 RIMS, Kyoto University
(抜粋)
有理数係数の 5 次の既約多項式が可解であるかどうかを、 (大部分の場合に) 有理数演
算だけで高速に判定する方法を紹介する。
1. ガロア群の計算原理
5 次の推移群は以下の 5 種類である。
・S_{5} 対称群 (位数 120)
・A_{5} 交代群 (位数 60)
・B_{5}'メタ巡回群 (位数 20)
・B_{5} 半メタ巡回群 (位数 10)
・C_{5} 巡回群 (位数 5)
ここで可解なものは、B_{5}',B_{5},C_{5} であり、 B_{5}’⊂ B_{5}⊂ C_{5} という関係にある。
そこで、方程式が可解かどうかはそのガロア群が B_{5}’ に含まれているかどうかを調べればよい。

参考文献
[1] エム・ポストニコフ、「ガロアの理論」、東京図書、 1964。

1002:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/17 10:58:25 CX/otP+s.net
>>914
ID:rXxqe236さん、どうもスレ主です。
レスありがとう

(引用開始)
ご参考にされてるHPは混乱してるのか、間違ったことも混じって書いてありますね。
定理として書いてある
「ζ=exp(2πi/n)の最小多項式は{1,ζ,ζ^2,...,ζ^{n-1}}の全てを解として持ちます.」
は明確に誤り。最小多項式の次数はφ(n)次なので、φ(n)個しか根を持ちえません。
(最小多項式)≠x^n-1 です。
あと、ζ,ζ^2,...,ζ^{n-1}が基底をなすように書いてありますが、これも素数でないnに対しては誤り。
Q上のベクトル空間としての次元もφ(n)なので、基底の個数もφ(n)個です。
(引用終り)


なんか、混乱していませんか?

(参考)
URLリンク(ja.wikipedia.org)
1の冪根
(抜粋)
自然数 n に対し、m (< n) 乗しても決して 1 にならず、n 乗して初めて 1 になるような 1 の冪根は n 乗根として原始的 (primitive) であるという。自然数 n を固定せず、1 の原始 n 冪根あるいは 1 の原始 n 乗根として得られる数を総称し、1の原始冪根(いちのげんしべきこん)


1003:、または1の原始累乗根(いちのげんしるいじょうこん)という。 性質 ・1 の冪根は全て、ガウス平面における単位円上にある。また概要で述べたことは 1 の n 乗根の全体が位数 n の巡回群となることを示している。 ・a を複素数とするとき、a の n 乗根を任意に一つ選んで n√a と記せば、1 の n 乗根に各々 n√a を掛けたものが複素数係数の方程式 xn ? a = 0 の根の全体となる。 ・1 の n 乗根をガウス平面上に表し、線分で結ぶと単位円に内接する正 n 角形となる。これは 1 の原始 n 乗根の一つを ξn として以下の式が成り立つことと同じである: 略 https://mathtrain.jp/njokonof1 高校数学の美しい物語 最終更新:2015/11/05 1のn乗根の導出と複素数平面 (抜粋) 定理1:1の n 乗根は複素数平面の単位円周上に等間隔で並ぶ。 定理2:1の n 乗根は全部で n 個あるが,それらの和は0である。 1のn乗根の和 次は定理2の証明です。こちらは解と係数の関係を使うだけです! 証明 1 の n 乗根たちは方程式 z^n?1=0 の解である。 よって,解と係数の関係よりそれらの和は 0 である。



1004:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/17 11:01:40 CX/otP+s.net
>>915
ID:rXxqe236さん、どうもスレ主です。
レスありがとう

>「アーベル群とアーベル群の直積はアーベル群にしかならないだろう」
>とか、数学徒であれば誰でも気づくツッコミも入れてきます。
>まえもそうでしたが、スレ主さんにはどうも半直積の概念がないように思えます。

なるほど
ちょっと考えてみます(^^;

1005:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/17 11:03:48 CX/otP+s.net
>>916
>HPなどは間違った記述も多いので、やはり自分の頭を通して

 >>919をどうぞ

1006:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/17 11:08:14 CX/otP+s.net
>>917
ぱち ぱち ぱち、拍手(^^
その証明も、昔どこかで見た記憶が
どこだったか、思い出せませんが
なお、別証明ですね(>>919 高校数学の美しい物語 ご参照)

1007:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/17 11:31:21 CX/otP+s.net
>>919 補足

ζ=exp(2πi/n)を根とする 二項方程式 x^n-1=0は、加約で因子(x-1)を持つので、次数は1つ下げられる
だから、最小多項式の次数はn-1までは下がります
なので、定理中で「ζ=exp(2πi/n)の最小多項式は」と書くと、次数が合わないですね
(n-1次の方程式が、n個の根を持つことになりますから)
だから、式を直すか、根の数を直す必要がありますね

1008:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/17 11:32:36 CX/otP+s.net
>>923 誤変換訂正

加約で因子(x-1)を持つので、
 ↓
可約で因子(x-1)を持つので、

1009:132人目の素数さん
19/10/17 12:01:47.16 4+tTJiqO.net
ζ=exp(2πi/5)、a=(ζ+2)^4(ζ^2+2)、K=Q(ζ)、Lはx^5-aの分解体、PはGal(L/Q)の2-Syllow群、MはPの作用で動かないLの元全体
にしたらどうだろ?
[M:Q]=5、LはMを含む最小のガロア拡大までは正しいけど、どんなm∈M\Qをとっても最小多項式はx^5-cの形にならないのではなかろうか?
半分勘だけど。

1010:132人目の素数さん
19/10/17 13:10:11.19 fQMp07ks.net
>>925
これ撤回。
反礼にならないな。
ガロア群がc5とaut(c5)の半直積のケースは全部最小多項式が2項のものがとれるのかな?

1011:132人目の素数さん
19/10/17 13:54:00.49 fQMp07ks.net
>>926
成立するかも。
Q(exp2πi/5)の類体が1を認めると割とスッキリ示せるっぽい。
しかし類対論は真剣に勉強した経験ないので自信なし。

1012:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/17 17:53:35.60 CX/otP+s.net
>>927
どうもスレ主です。
ひょっとして、おっちゃんですか?
外していら、失礼(^^;

1013:132人目の素数さん
19/10/17 18:15:34.56 fQMp07ks.net
>>928
私はオッさんではある。
やっぱりLをx^5-(-1+√5)/2の分解体にした時むりかな?
無理である可能性をx^5-k kはKの単数の場合まで絞り込めたけど難しいね。これ。

1014:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/17 18:50:33.23 CX/otP+s.net
>>929
>私はオッさんではある。
ああ、そうでしたか
これは失礼しました
しかし、難しいことを考えられますね(^^

1015:Mara Papiyas
19/10/17 18:58:50.90 448PbhX4.net
>>914
いちいちごもっとも



1016:>>909みたいにアケスケに書けば 1→ζ→ζ^2→…→ζ^(n-1)→ζ^n=1 みたいなナイーブな認識が 円分体のガロア群に関しては 全然見当違いだと分かる (クンマー拡大とは違うのだよw) 例えばφ12は4次式で ζ=exp(2πi/12)cos(2π/12)+i*sin(2π/12) とすれば ζ,ζ^5,ζ^7,ζ^11 のみが解 ζ,ζ^5,ζ^7,ζ^11 ↓^5 ζ^5,ζ^25=ζ,ζ^35=ζ^11,ζ^55=ζ^7 ↓^5 ζ,ζ^5,ζ^7,ζ^11 ζ,ζ^5,ζ^7,ζ^11 ↓^7 ζ^7,ζ^35=ζ^11,ζ^49=ζ,ζ^77=ζ^5 ↓^7 ζ,ζ^5,ζ^7,ζ^11 ζ,ζ^5,ζ^7,ζ^11 ↓^11 ζ^11,ζ^55=ζ^7,ζ^77=ζ^5,ζ^121=ζ ↓^5 ζ,ζ^5,ζ^7,ζ^11 これはクライン群で、巡回群ではないね



1017:Mara Papiyas
19/10/17 19:00:54.86 448PbhX4.net
>>915
>Mara Papiyasさんも勉強しながら書かれてる感じですが、
そうですね ツッコむために勉強してます(ひでぇ)
>スレ主さんとは違って自分の頭を通して書いているな
>というのが分かります。
そうですね そうでないとツッコめませんから(ひでぇ)
>「アーベル群とアーベル群の直積はアーベル群にしかならないだろう」
>とか、数学徒であれば誰でも気づくツッコミも入れてきます。
可解群の説明で「剰余群がアーベル群」とあるのを読んで
「じゃ、可解群はアーベル群じゃん」とかいいだすのは軽率な馬鹿
もちろん、S3はアーベル群じゃないから、
そこで気づかないとおかしい
>スレ主さんにはどうも半直積の概念がないように思えます。
そもそも、馬鹿は計算して確かめる癖がない
だから
「1の5乗根の原始根 ζ5を添加する拡大から、位数5の巡回群が出る」
なんてアホなこと書いちゃうんですわw

1018:Mara Papiyas
19/10/17 19:02:15.79 448PbhX4.net
>>916
>(スレ主は)まとまった理論が頭の中に構築されている感じがしません。
全くおっしゃる通り
あのね、工学屋は別にガロア理論なんて知らなくたって困りませんよ
代数学の基本定理だって、結論だけ知っときゃいいw
「n次方程式は、重解も含めて必ずn個の解がある」とかね
解は、数値解法でゴリゴリ求めればいい
馬鹿が粋がって「ガロア理論がー」とかいって初歩的な誤りを連発
しかも誤りを指摘されても決して認めずワケワカランな抗弁するから
イジりまくられる
知らないとか間違うとかいうのは恥じゃない(開き直るw)
間違いを認めず、知らないことを自覚せずに
知ってるかのごとき顔をしてウソ言い続けるのが
恥ずかしいんだよ

1019:Mara Papiyas
19/10/17 19:02:55.63 448PbhX4.net
>>919
>なんか、混乱していませんか?
おまえがなw
ぶっちゃけ「最小多項式」が分かってないだろw
wikipedia
最小多項式 (体論)
「α の最小多項式は
 α を根として持つ F[x] の 0 でないすべての多項式のうち
 次数が最小のモニック多項式である。」
(モニック多項式は最高次係数が 1 の一変数多項式)
「1の冪根の Q[x] における最小多項式は円分多項式である。」

1020:Mara Papiyas
19/10/17 19:04:10.96 448PbhX4.net
>>923
wikipediaの円分多項式のところを読め
φnを円分多項式とする
 (x^12-1)
=φ1φ2φ3φ4φ6φ12
ζ=cos(2π/12)+i*sin(2π/12)とする
φ1=(x-1) 根は1
φ2=(x+1) 根はζ^6=-1
φ3=(x^2+x+1) 根はζ^4、ζ^8
φ4=(x^2+1) 根はζ^3=i ζ^9=-i
φ6=(x^2-x+1) 根はζ^2、ζ^10
φ12=(x^4-x^2+1) 根はζ、ζ^5、ζ^7、ζ^11

1021:Mara Papiyas
19/10/17 19:10:37.89 448PbhX4.net
>>901
URLリンク(repository.hyogo-u.ac.jp)
PDF 可解な5次方程式について - 兵庫教育大学 大迎規宏 著 -修士論文 2003
馬鹿は上記の論文読んでないだろ
読めば、定理4.9(p72)で貴様の主張が否定されてると分かるぞ

1022:Mara Papiyas
19/10/17 19:21:12.21 448PbhX4.net
x^5+b=0のとき、判別式Dfは3125*b^4で、
3125は5^5だから、Δf=√Dfは、有理数になりようがない
つまり、x^5+b=0のガロア群はF20

1023:132人目の素数さん
19/10/17 20:14:37.67 rXxqe236.net
>>918
aを3乗数でない整数とすると、x^3-aはQ上既約。
分解体KはQ上6次拡大体なので、Gal(K/Q)=S_3.
ただし、1の原始3乗根ωを添加した体上では
Gal(K/Q(ω))=C_3と退化する。これが一般3次方程式との違い。
つまり、一般3次方程式は最初に2次方程式を解いたあとωを添加して3次クンマー拡大でべき根表示が得られる
(分解体Kにω�


1024:ェ含まれることを必ずしも意味しない)わけですが 最初の2次拡大とQ(ω)/Qが一致する特殊ケースが2項方程式(及びそれと同値な方程式)なわけです。 わたしが指摘したのは、この類似が5次方程式でも成立してるよねってことです。 なので、Mara Papiyas氏の挙げた2項方程式は まさしくスレ主の言う位数20の可解群を持つ方程式になってるわけですよ、Q上のね。



1025:132人目の素数さん
19/10/17 20:16:36.81 rXxqe236.net
>>927
最初の4次拡大がQ(ζ)/Q(ζは1の原始5乗根)と一致するかどうかなので、そんな難しい話じゃないと思いますよ。

1026:現代数学の系譜 雑談 古典ガロア理論も読む
19/10/17 20:51:46.95 khSgay+Z.net
>>938
>まさしくスレ主の言う位数20の可解群を持つ方程式になってるわけですよ、Q上のね。
ID:rXxqe236さん、どうも。スレ主です。
レスありがとう
いや
ご指摘の通りです
Q上で、5次方程式の既約 2項方程式 x^5-a=0 のガロア群、位数20の可解群を持ちます
ご指摘の通りです m(_ _)m

1027:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE
19/10/17 22:08:16 khSgay+Z.net
>>914 >>934-935

ID:rXxqe236さん、ID:448PbhX4さん、あなたたちが正しいわ
大変失礼しました。円分多項式(円周等分多項式)ですよね

草場公邦 「ガロワと方程式」P118 5.5 「円周等分多項式の既約性」
に、詳しい説明がありました

とすると、”1のn乗根 (Joh著) 物理のがきしっぽ”さん URLリンク(hooktail.sub.jp)
n=pのときのイメージのままで書いているのかも(^^;

(参考)
URLリンク(ja.wikipedia.org)
円分多項式

このように n 乗して初めて 1 となる複素数(1 の原始 n 乗根)全てを根に持ち、最高次数の項の係数が 1 である多項式が円分多項式 Φn(x) である。

URLリンク(ndu-rep.repo.nii.ac.jp)
円周等分多項式の有理数体上での既約性
著者桜岡 充
雑誌名日本歯科大学紀要. 一般教育系
巻28
ページ9-14
発行年1999-03-20

URLリンク(www.asakura.co.jp)
ガロワと方程式
A5変/192ページ/1989年07月10日
ISBN978-4-254-11467-6 C3341
草場公邦 著

URLリンク(www.kurims.kyoto-u.ac.jp)
ラグランジュとガウスの代数方程式論の比較的考察
高瀬正仁
九州大学 MI 研究所/日本オイラー研究所
(抜粋)
円周等分方程式の代数的可解性を全面的に保証するにはこれでは不十分であり,もっと精密な
相互関係を明らかにしなければならないが,ガウスはこれに成功し,『アリトメチカ研究』の第7
章において円周等分方程式の根は巡回的であることを明らかにした.代数的可解性は根の巡回性に
支えられているのである.
円周等分方程式の領域ではラグランジュの省察は正鵠を射ていたが,具体的に表れたものはなお
雛形に留まっていた.根の相互関係への着目という一点においてガウスに影響を及ぼしたのは間違
いないが,ガウスが発見した根の巡回性はラグランジュの到達した地点からあまりにも遠いところ
にあった.それでもラグランジュはガウスが遂行したことの意味合いを理解して,書簡を送ってガウスを称讃した.


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch