19/10/06 23:16:30.89 d8OQiN+r.net
メモ
URLリンク(ja.wikipedia.org)
二階述語論理
(抜粋)
二階論理の表現能力
空でなく上に有界な実数の集合があるとき常にその集合には上限が存在するという命題を表すには、二階述語論理が必要となる。
二階述語論理では、「ドメインは有限である」とか「ドメインは可算無限集合の濃度である」といった文も形式的に表現可能である。
一階述語論理ではこれら(「有限集合であること」や、「可算集合であること」)を表現できないことが、レーヴェンハイム-スコーレムの定理から導かれる。
URLリンク(ja.wikipedia.org)
一階述語論理
URLリンク(ja.wikipedia.org)
数理論理学
(抜粋)
数理論理学はしばしば集合論、モデル理論、再帰理論、証明論の4つの領域に分類される。
集合論における仕事は殆ど全ての通常の数学を集合の言葉で形式化できることを示した。しかしながら、集合論に共通の公理からは証明することができない幾つかの命題が存在することも知られた。むしろ現代の数学基礎論では、全ての数学を展開できる公理系を見つけるよりも、数学の一部がどのような特定の形式的体系で形式化することが可能であるか(逆数学のように)ということに焦点を当てている。