19/09/22 07:37:05.32 dCfcIyTY.net
>>418
(引用開始)
したがって、Z/4Z \ 0 は乗法について閉じていない。
このことから、代数系 (Z/4Z, +, ×) は(4 を法とする剰余類環として)可換環を成すのみで、零因子が乗法逆元を持たないため体にはならない(位数 4 の有限体 F4 は存在するにも関わらず、である)。
(引用終り)
位数 4 の有限体 F4について(^^
「要は1の原始3乗根を添加した体がF4である」か
複素数まで考えないといけないんだ(^^;
URLリンク(br-h2gk.hatenablo)g.com/entry/finite_field_02
数学とその他の日々
有限体F_2,F_4,F_8,F_16の構造決定 2015-12-17
(抜粋)
F4について
3つのアプローチがある。
1つ目としては、x^4?x=x(x?1)(x^2+x+1)の最小分解体だから、
x^2+x+1のF2上の分解体になり、
その根 ω∈F ̄2、
要は1の原始3乗根を添加した体がF4である。
したがって、F4={0,1,ω,ω2}となる。
ωの演算についてはQ上のそれとは異なるが、
考え方は一緒で、ほとんど符号を無視するだけなので省略する。
もしくは、商をとる順番を換える典型的な方法によって
F2[x]/(x^2+x+1)=~ Z[x]/(2,x^2+x+1)=~ Z[ω]/(2)
と捉えてもよい。
ここでいう右端のωは通常のω∈Cの意味である。
このx^2+x+1という既約多項式を見つけるには
他に2つの考え方があり、
1つはフェルマーの小定理からF2の元は常にx^2+x=0なので、
x^2+x+1はF2上の根を持たず、既約であるというもの。
もう1つは、標数2の体上の2次拡大だから、アルティン=シュライヤー拡大で、
x^2?x?aの形で根を添加すればよい、ということだが、
a=0は明らかに駄目だからx^2?x?1=x^2+x+1が求まる。
(引用終り)
以上