19/09/19 07:55:39.86 MSw7Rbq1.net
>>338
つづき
3)こう考えると、上記のwikipediaの単純な自然数構成でも
∈Rを使って
0 = {} ∈R {{}} ∈R {{{}}} ∈R {{{{}}}} = 3
と、二項関係∈Rで、綺麗な順序が構成できる
こうして構成した二項関係∈Rには、モストフスキ崩壊補題により
”推移的集合Mによる (M, ∈) と順序同型で、順序同型な順序数が一意に存在する” (>>261 近藤 友祐 神戸大学 )
この考えによれば、二項関係∈Rの意味で
>>299のA社={第一事業部、第二事業部、第三事業部、AI研究所}で
第一事業部に属する社員は、またA社にも属する(∈Rの意味で)と言える
しかし、それは、A社={ a、第一事業部、第二事業部、第三事業部、AI研究所}を意味する訳では無い
この見方を支える一つの柱が、モストフスキ崩壊補題ですw(^^;
日常の自然言語における”所属”とか”属する”は、この意味ですね
で、繰返すが、確かに、
0 := {}, suc(a) := {a} と定義したならば、
0 := {}
1 := {0} = {{}}
2 := {1} = {{{}}}
3 := {2} = {{{{}}}}
と非常に単純な自然数になる
そして、この自然数の構成は、厳密な意味での推移的集合による構成ではないが、推移的集合による構成と順序同型になるってこと(モストフスキ崩壊)
以上