19/09/11 07:43:52.73 IlUCyPH9.net
>>30
つづき
5)∈-順序は、推移的なので、xの任意の元 u ∈ x が成立つと、x ∈ y → u ∈ y成立(∵推移性より)
だから、この場合は”x ∈ y → x ⊂ y ”成立
6)で、我々が通常扱う集合は、超限帰納法も適用可の場合が多く、∈-順序が成立つとして良い
∈-順序が成立つ場合は、”x ∈ y → x ⊂ y ”成立
7)「まったく別もの」ではないが、別もの
8)なお、”x ∈ y → x ⊂ y ”を認めないと、素朴集合論のベン図に反例が出る
つまり、x ∈ yであるにも関わらず、xのある元 u ∈ x で、u not∈ y となると、素朴集合論のベン図が描けないw(^^;
(∈-順序を仮定しないとどうなるか? 上記のように、分からんかった(^^;
坪井先生の上記、”整列順序の全体は(大きすぎて)集合にはならない”のような記述もあるので、
自分の考えが、”公理的集合論”の範囲内か範囲外かが、判断できないので、ギブアップします)
(参考)
URLリンク(www.math.tsukuba.ac.jp)
Akito Tsuboi 筑波大
URLリンク(www.math.tsukuba.ac.jp)
学群関係
URLリンク(www.math.tsukuba.ac.jp)
数理論理学II Akito Tsuboi 筑波大
(追加参考)
URLリンク(www.practmath.com)
実用的な数学を
2019年4月18日 投稿者: TAKAN
順序数 Ordinal Number
(抜粋)
ともあれそんな『比較』ですが、
なにでやるかというと、「帰属関係 ∈ 」を使ってやります。
(引用終り)
以上