19/09/18 07:38:35.48 3KrCaRK2.net
>>261 補足説明
(引用開始)
URLリンク(elecello.com)
集合論ノート 0005 モストフスキ崩壊補題 (Mostowski Collapse Lemma) 近藤友祐 初稿: 2018/02/22 更新: 2019/09/16
(引用終り)
ここに出てくる”推移的”、”set-like”、”整礎的”、”外延的”、”クラス”の補足、下記ご参照
(参考)
URLリンク(ja.wikipedia.org)
二項関係
(抜粋)
集合上の関係
集合 X 上の二項関係のいくつか重要なクラスとして、以下のようなものを挙げることができる:
・推移的 (transitive)
X の各元 x, y, z について、x?R?y かつ y?R?z ならば x?R?z となるとき、関係 R は推移的であるという。
「先祖である」という関係は推移的である。実際、x が y の先祖で、y が z の先祖ならば、x は z の先祖である。
・集合的 (set-like)
集合 X の任意の元 x に対して、y?R?x となるような y 全体の成すクラスが集合であるような関係は、集合的(あるいは集合状、集合様)であるという。
(これは真のクラス上の関係を認める場合でないと意味を持たない)
順序数全体の成すクラス上の通常の順序関係 "<" は集合的関係だが、その逆順序 ">" は集合的ではない。
・整礎的 (well-founded)
X の任意の空でない部分集合Aが極小元a(Aのどの元xもxRaとならない)を持つときR は整礎的であるという。
自然数上の大小関係"?"は整礎的である。正則性公理を仮定すると∈は任意の集合上で整礎的である。
・外延的 (extensive)
X の任意の元 x, y について、X の任意の元 z について zRx ⇔ zRy が成り立てば必ず x = y となるとき R は外延的であるという。
全順序は外延的である。∈は任意の集合上で外延的である。
反射的、対称的かつ推移的な関係は同値関係(あるいは等値関係)と呼ばれる。
反射的、反対称的かつ推移的な関係は半順序である。半順序が完全ならば全順序、単純順序、線型順序あるいは鎖などと呼ばれる[3]。
整礎的な線型順序は整列順序と呼ばれる。
ある関係が対称、推移的かつ連続的ならば必ず反射的である。
(引用終り)
つづく