19/09/17 02:01:17.00 LgBBL85s.net
>>259
>>260
「スレ主の耳に数学」なだけで根拠は書き込んでありますよ
たとえば2 := {1}と定義できるがその場合1∈{1}, {1} = 2, 2∈偶数で
あっても1∈偶数ではないということです
いくらスレ主でも1は偶数ではないでしょ?
ベン図で偶数の集合と奇数の集合を書けば当然交わらない
> A社={第一事業部、第二事業部、第三事業部} と定義
第一事業部は(A社の)第一事業部というのが暗黙の前提でしょ
一方でB社={第一事業部, 第二事業部, 第三事業部, 第四事業部}
などと定義すれば
> 5)第一事業部第一部第一課の課員に、aさんというヒトがいるとする
> a∈第一事業部第一部第一課 です!
> 6)一方、普通は、aさんは、A社の社員でもありますから
> a∈A社 なんですよね、素朴集合論では(^^;
「a∈第一事業部第一部第一課」ならば「a∈A社」とはいえないですね
正しく書けば
A社=第一事業部 ∪ 第二事業部 ∪ 第三事業部
第一事業部 = 第一事業部第一部 ∪ 第一事業部第二部 ∪ 第一事業部第三部
など
更に一般には分割した集合の積集合はもちろん空集合とは限らない
同様に
自然数全体の集合 = {偶数全体の集合, 奇数全体の集合}は正しくない
自然数全体の集合 = 偶数全体の集合 ∪ 奇数全体の集合は正しい