19/09/14 11:28:07.67 QdZ5TU5n.net
>>136
つづき
URLリンク(ja.wikipedia.org)
公理的集合論
(抜粋)
集合の公理系
現在一般的に使われている集合の公理系は以下の ZFC である。
・対の公理 任意の要素 x, y に対して、x と y のみを要素とする集合が存在する:
これを{x,y}で表す。
・和集合の公理 任意の集合 X に対して、X の要素の要素全体からなる集合が存在する:
(>>118)
(参考)
URLリンク(ja.wikipedia.org)
推移的集合
(抜粋)
集合論において、集合 Aが推移的であるとは、
・x ∈ Aかつy ∈ x、ならばy ∈ A もしくは、同じ意味であるが
・x ∈ AかつxがurelementでないならxはAの部分集合である。
ということ。
同様にクラスMが推移的であるとは、Mの要素は全てMの部分集合であることをいう。
例
ジョン・フォン・ノイマンによる順序数の定義を用いると、順序数は遺伝的に推移的な集合として定義される
すなわち、順序数は推移的集合でその要素も全て推移的で(よって順序数でも)ある。
フォン・ノイマン宇宙 Vや 構成可能宇宙 L の構成の際に現れる Vα や Lαといった全ての階層も推移的集合である。
宇宙 L と V もそれ自体推移的クラスである。
つづく