19/09/13 19:05:48.63 QEVZazxA.net
ニワトリにはこっちのほうが分かりやすいか
URLリンク(eurekagap.up.seesaa.net)
「Definition 1.2.1.
集合 x が推移的(transitive)であるとは,
∀v(v ∈ x → v ⊆ x)
となることである.
これは x の元の元もまた x に属しているということである.」
いっとくが∀v(v ∈ x → v ⊆ x)は公理ではない
∀v(v ∈ x → v ⊆ x)が成り立つ集合xを
推移的だといってるだけ
「Definition 1.2.2.
推移的かつ ∈ によって整列順序づけされる集合を
順序数(ordinal)とよぶ」
「α, β, γ, . . . などのギリシャ文字で順序数を表す.
また,α ∈ β を α < β と書き,
α ∈ β または α = βであることを
α ? β と書くことにする.
Lemma 1.2.7. 任意の順序数 α, β に対して α ? β ⇔ α ⊆ β.」
ほら、「任意の順序数 α, β に対して」とあるだろ
決して「任意の集合x,yに対してx ∈ y ⇔ x ⊂ y」なんて書いてないw
集合論のどの公理で
「任意の集合xは順序数である
つまり任意の集合xは推移的かつ ∈ によって整列順序づけされる」
なんて証明されるんだよw
選択公理とかいうなよ 笑われるからwwwwwww