現代数学の系譜 工学物理雑談 古典ガロア理論も読む77at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 - 暇つぶし2ch109:132人目の素数さん
19/09/13 19:05:48.63 QEVZazxA.net
ニワトリにはこっちのほうが分かりやすいか
URLリンク(eurekagap.up.seesaa.net)
「Definition 1.2.1.
 集合 x が推移的(transitive)であるとは,
 ∀v(v ∈ x → v ⊆ x)
 となることである.
 これは x の元の元もまた x に属しているということである.」
いっとくが∀v(v ∈ x → v ⊆ x)は公理ではない
∀v(v ∈ x → v ⊆ x)が成り立つ集合xを
推移的だといってるだけ
「Definition 1.2.2.
 推移的かつ ∈ によって整列順序づけされる集合を
 順序数(ordinal)とよぶ」
「α, β, γ, . . . などのギリシャ文字で順序数を表す.
 また,α ∈ β を α < β と書き,
 α ∈ β または α = βであることを
 α ? β と書くことにする.
 Lemma 1.2.7. 任意の順序数 α, β に対して α ? β ⇔ α ⊆ β.」
ほら、「任意の順序数 α, β に対して」とあるだろ
決して「任意の集合x,yに対してx ∈ y ⇔ x ⊂ y」なんて書いてないw
集合論のどの公理で
「任意の集合xは順序数である
 つまり任意の集合xは推移的かつ ∈ によって整列順序づけされる」
なんて証明されるんだよw
選択公理とかいうなよ 笑われるからwwwwwww


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch