現代数学の系譜 工学物理雑談 古典ガロア理論も読む77at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む77 - 暇つぶし2ch1081:132人目の素数さん
19/10/18 17:49:53.12 mJ2TyGNr.net
>>973
わたしが理解している話の流れ
位数20の可解群をガロア群として持つ5次方程式の例として
Mara Papiyas氏がx^5-a=0を出した。
しかしスレ主は前々から「基礎体には1のべき根はすべて含まれている」という条件に拘っていて、ガロア群はC_5だろうとこの例を認めなかった。
わたしは、x^3-2=0というQ上S_3をガロア群として持つ有名な例と比較して、氏の例は立派な例になっていることを説明した。
そんな感じですかね。
貴方は途中からよく分からない理由で参入してきた、何をしようとしているのかも不明という印象です。失礼ながら。

1082:132人目の素数さん
19/10/18 18:09:03.59 mJ2TyGNr.net
>>973
まず文章が非常に読みにくいです。
反礼→反例、規約→既約 などの誤字が目立ちます。
既約というのは、ご存じでしょうが、これ以上約すことができないという意味だから、既約なんですよ。
規約だと違和感を感じませんか?
Qを有理数体の意味に使ったり、Quotientなる群?の意味に使ったりまぎらわしいです。それはまだしも。
前半の可解な既約5次方程式のガロア群になりうる群位数が制限されるというのは一般的な話ですね。ですが
>さらに絞っていくと位数は5か20しかない事も言えます。
スレに出ていた話では5,10,20のケースがあるそうです。
>20の場合というのはあるa∈KでLがその最小分解体となるケースです。
これが何を言ってるのか分からないです。
>この時x^5-N[L/K](a)はLで分解するのでこれがQで規約なら主張は成立です。
これも意味不明。N[L/K]とはノルム写像ですか? でも、a∈Kであればノルムを取る意味ありますか?
わたしの理解するところ。位数20の話としましょう。
仮にこのガロア群を持つ方程式がx^5-a=0 の形だとすると、1の原始5乗根ζを添加した後に5次クンマー拡大で分解体に到達することになります。
つまり「位数20のガロア群を持つQ上の5次方程式を解くとき最初の4次拡大は必ずQ(ζ)/Qと一致する」
ことになります。
それはおかしいと思う(ただし直感で詳しく検討してはいないが)、最初からそんな問題意識は持たないです。
そもそも3次の場合は2項方程式に帰着しませんが、それと可解5次の場合の違いが説明できますか?

1083:132人目の素数さん
19/10/18 18:17:33.15 ospgeXvi.net
>>989
いや、ま、私が話の流れから考え出した問題がなんの関係もないどうでもいい問題と思われるなら別に構いませんよ。
私は単にQ上既約5次多項式でその分解体のガロア群が可解の場合なのはどんなものがあるのか、x^5-aの形の多項式の分解体になってないものがどのくらいあるのか興味を持っただけですから。
Q(exp2πi/5))上とQ上では話が違うので前者の上で言えたからと言って後者の上で言えるとは限らないのはおっしゃる通り。
なので確かめてみようと思ったまでです。
別に私も誰も興味ないなら判明しても詳しくかくつもりもありません。
ただ私がQ(exp2πi/5))で言えたからQ上でも言えるはずなどという根拠薄弱な事を言ってると思われたようなのでそんな事はなくキチンと数学的に精査して書いてる事を示しただけです。
まぁきりのいいとこまで考えはしますがウザいようなのでもうここには書きません。
お騒がせでした。

1084:132人目の素数さん
19/10/18 18:52:33.90 mJ2TyGNr.net
>>991
Q(exp2πi/5))上ならなおさらおかしくないですか?
Q(exp2πi/5))上、方程式x^5-a=0 の分解体は5次クンマー拡大でガロア群は
必然的にC_5なので、ガロア群位数20はそもそも生じないことになります。
基礎体を大きくしてもいいなら、わたしも反例の存在を大まかに説明できるかもしれません。
具体例ではなく、概念的な反例になりますが。
具体例であれば、スレ中に可解な5次方程式についての論文のリンクが貼ってあったので、それが参考になるでしょう。
>まぁきりのいいとこまで考えはしますがウザいようなのでもうここには書きません。
>お騒がせでした。
別にうざくはないですよ。もともとクソみたいなスレなので
落書き帳として使ってもスレ主は本望だと思いますよ(^^
仮に間違っていたとしてもスレでは日常茶飯事なので、気にされることもないです。

1085:Mara Papiyas
19/10/18 19:27:51.68 yJv1enDY.net
>>992
>もともとクソみたいなスレなので
そもそも、ここってクソな1を凹るスレだろ?w
>仮に間違っていたとしてもスレでは日常茶飯事
1は口を開けば間違いしか言わんからな
それにしても>>973の書き込みはヤバい感じがプンプンしてましたな
5chってそういう人が多いからね 病気なら仕方ないけど

1086:
19/10/18 19:37:34.79 g8NBUxtW.net
>>965
>書名に「ガロア」と入れると売れるらしい w(゜ロ゜;
そのとおり!
石井俊全氏の「ガロア理論の頂を踏む」をよろしく、
です、私は第2章可解群で撃沈しているのですが…いつかもう一度第一章からチャレンジしたいと思っています

1087:Mara Papiyas
19/10/18 19:44:53.24 yJv1enDY.net
>>970
正直言って、20世紀的な現代数学は、今となってはハンパに古臭い
群論も今の幾何学ではケイリーグラフとかオートマトン構造とか
使って研究してるじゃないですか
要するに大事なのは結果が出るかどうかであって何でもあり
「抽象的」とかいうスタイルとかいうか雰囲気に固執するのは
数学自体に興味はなくて、ただ粋がりたいだけのファッション馬鹿でしょw

1088:132人目の素数さん
19/10/18 19:57:27.59 ospgeXvi.net
まぁ病気だと思われてまで書くのもなんなのでこれ以上は書きません。
お騒がせでした。

1089:132人目の素数さん
19/10/18 20:04:52.92 mJ2TyGNr.net
>>996
病気とは思ってませんよ。
ここに書くことは相手に伝わる文章も書く訓練としてもいいと思います。
また気が向いたら書かれてみては。
正直何が言いたい・やりたいのか分からなかった。少し気になります。

1090:132人目の素数さん
19/10/18 20:16:00.41 ospgeXvi.net
やりたい事は
Q上5次既約多項式の分解体のガロア群が可解であるものを分類せよ。
特にx^5-aの形の既約多項式の分解体でないものはどれくらいあるのか?
です。
意外に?ほとんどかの形してます。
少なくとも5次二面体群になるやつはないようで5次巡回拡大かc5⋊(aut(c5))しかないようで後者はあるaでのx^5-aの分解体になるようです。
前に書いたレスでaがQ(exp(2πi/5))の整数環の単数になる場合が検討しきれてない。

1091:
19/10/18 20:27:40 mJ2TyGNr.net
>>998
aがQ(exp(2πi/5))の数ならQ上にならないじゃん

悪意のないツッコミ(^^
数え方というのもよく分からない。
自分の構成法が偏ってれば、当然そういう形ばっかりになる
そうでないと言える構成法があるんでしょうか?

1092:
19/10/18 20:31:36 mJ2TyGNr.net
>>995
そういう話はよく分からない。
ガロア理論的数学といえばあからさまなのは数論幾何とか
モッチー理論もダメと言われながら、依然として話題。

1093:1001
Over 1000 Thread .net
このスレッドは1000を超えました。
新しいスレッドを立ててください。
life time: 39日 0時間 39分 25秒

1094:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch