19/09/29 08:10:09.08 mP2c2aFR.net
>>492
x=(1/3)(x+√(x^2+2))の解をαとし(αは正のみであることに注意)
y[n]=x[n]-αとおいて漸化式を書き換え(分子の有理化)し
y[n+1]=(1/3)y[n](1+(y[n]+2α)/(√((y[n]+α)^2+2)+2α)) …(A)
この式とy[1]>0からy[n]はすべて正
不等式√((y[n]+α)^2+2)+2α>y[n]+2αを(A)に代入し
0<y[n+1]<(2/3)y[n]
これを解くと
0<y[n+1]<y[1](2/3)^n
ゆえに
lim[n→∞]y[n]=0
>>494
問題文から推測すると収束値候補αより先に収束性を示してほしそうだが...
(αの計算なしで有界単調性⇒収束性を示すのは難しそう)
ひょっとして縮小写像の知識を問う問題?