19/09/09 02:31:37.47 vE1g6YLv.net
>>54
或る a>0 を満たす実数aが存在して、平面Π上の円 C':x^2+y^2=25 と
放物線 (L_1)':y=(x-a)^2 が或る点 (P')(x_1, y_1) で接するとする。
同一平面Π上で円 C' と放物線 (L_1)'、及び接点 (x_1, y_1) を何れもx軸に平行な方向に同時に -a ずらして考えると、
仮定から、平面Π上で円 C' をx軸方向に -a ずらした円 C:(x+a)^2+y^2=25 と
Π上で放物線 (L_1)' をx軸方向に -a ずらした放物線 L_1:y=x^2 とは、平面Π上の点 P(x_1+a, y_1) で接する。
このとき、平面Π上において、点Pは円 C と放物線 L_1 との接線 l_1 上の点である。
放物線 L_1 の式 y=x^2 の両辺をxで微分すると y'=2x。
同様に、円Cの式 (x+a)^2+y^2=25 の両辺をxで微分すると (x+a)+yy'=0 を得る。
また、すべてのΠ上の下に凸な放物線Lに対して、任意のL上の点 (P_1)(L) における接線の傾きは、すべて有界であり実数である。
円Cと下に凸な放物線 L_1 とは直線 l_1 上の点 P(x_1+a, y_1) で接するから、接線 l_1 の傾きは0とは異なり、
点Pにおける接線 l_1 の傾きは、x=x_1+a のとき y'(P)=2(x_1+a) となる。
円 C' の式 x^2+y^2=25 をxで微分したとき x+yy'=0 となることに注意すると、
同様に点Pにおいて、(x_1+a)+(y_1)(y'(P))=0 となる。
よって、点Pにおいて (x_1+a)+(y_1)・2(x_1+a)=0 が成り立つ。
円Cと放物線 L_1 とは点 (-a, 5) で接っしないから、点Pにおける接線 l_1 の傾きについて
y'(P)≠0 であり、2(x_1+a)≠0 から x_1+a≠0。故に、1+2y_1=0 から y_1=-1/2。
しかし、L_1 は平面Πの原点Oを頂点とするy軸に対称で下に凸な放物線だから、y_1>0。
故に点Pのy座標 y_1 について -1/2>0 となって -1/2<0 に反し矛盾が生じることになる。
背理法が適用出来るから、背理法を適用すると、どんな a>0 を満たす実数aに対しても、
平面Π上の円 C':x^2+y^2=25 と放物線 (L_1)':y=(x-a)^2 との接点 (P')(x_1, y_1) は存在しない。