暇つぶし2chat MATH
- 暇つぶし2ch451:するから k=0,1,2,3,4 の5個で十分。 これらのうち2つが同じ、すなわち α^j = 1 (1≦j≦4) になったと仮定すると j=1 なら α = 1, j=2 なら α = (α^2)^3 = 1^3 = 1, j=3 なら α = (α^3)^2 = 1^2 = 1, j=4 なら α = 1/(α^4) = 1/1 = 1, いずれも α≠1 と矛盾する。 これら相異なる5個が z^5-1=0 の解である。
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch