19/09/09 06:58:55.57 w2gV7wtr.net
>>883 補足
1)有限長の数列
s = (s1,s2,s3,・・・,sn) (問題の数列)
r = (r1,r2,r3,・・・,rn) (代表の数列)
で、入れる数p→∞と大きくすると
決定番号の確率分布は、
d=n の確率1
d=n 以外の確率0
2)上記有限長の数列において
d=n 以外の二つの数 d1,d2をとって
どちらが大きいか d1<d2となる確率
P(d1<d2)=1/2だとか、うんぬんだとか
それって、上記「d=n 以外の確率0」の中の議論で
それは、殆ど無意味な議論です
3)では、列の長さnをどんどん長くしていったら?
d=n の確率1
d=n 以外の確率0
は不変で、d=nの箱が、どんどん先頭から遠くへ行く
どこまで遠くへ行っても、先頭からd=n-1までの”確率0”は変わりません
4)で、列の長さn→∞の極限を考えたら?
d=nの箱が、どんどん先頭から遠くへ行く
どこまで遠くへ行っても、先頭からd=n-1までの”確率0”は変わりません
有限の二つの数 d1,d2をとって
どちらが大きいか d1<d2となる確率
P(d1<d2)=1/2だとか、うんぬんだとか
それって、上記「確率0」の中の議論で
それは、殆ど無意味な議論です
(�