19/09/04 22:23:50.72 5W6wekr5.net
>>707 補足
(引用開始)
下記のトランプ52枚中の1枚を的中させても、驚きのマジックです
普通なら当たらない。ところが、時枝記事、全実数中のピンポイント1点を的中させる、それが時枝マジックでしょ?
本来、その1つの箱も、従来の確率理論通りなんですよ!! だからのマジックでしょ!ww(^^
(引用終り)
・任意の実数R(-∞, +∞)の1点を、ピンポイント1点を的中させる(下記時枝記事ご参照)
それがどれだけ凄いことか!!
それを、以下に説明します
・普通、実数区間[0,1]の的中でも、範囲を持たせます
例えば、[m-0.05,m+0.05] ここに、mは、
782:0.05~0.95の間にある これで、的中確率は、1/10になる ・ところが、実数R(-∞, +∞)では、[m-L,m+L] ここに、L >0 の実数として、範囲の長さ2L ところが、Lをいくら大きな数にとっても、全体が無限大ですから [m-L,m+L] の範囲に入る確率は、2L/∞(=1/可算無限)=0 つまり、測度論的な確率は0 ・さらに、もし範囲[m-L,m+L]が的中できたとしても ピンポイント 1点的中は、1/非可算無限=0です ・つまりは、「任意の実数R(-∞, +∞)の1点を、ピンポイント的中させる」ことは ある範囲の的中 1/可算無限の上に、さらにその範囲中のピンポイント的中 1/非可算無限、この2つの的中が必要なのです ・時枝先生は、あっさり確率99/100と言いますが、大学の確率論を知る人からみれば 「時枝先生、ご冗談でしょう」ですね ・大学の確率論を知らない、大学1~2年の同値類を学んだレベルの人だけが引っかかるのです しかし、大学3~4年で確率論・確率過程論を学べば、もう引っかかりませんw(^^ QED (>>350より) スレ47 https://rio2016.5ch.net/test/read.cgi/math/1512046472/ 時枝問題(数学セミナー201511月号の記事) 「どんな実数を入れるかはまったく自由, もちろんでたらめだって構わない. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる. 勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」
783:132人目の素数さん
19/09/04 22:49:20.38 1JIP4/Ke.net
>>715
>時枝先生は、あっさり確率99/100と言いますが、大学の確率論を知る人からみれば
> 「時枝先生、ご冗談でしょう」ですね
だから時枝問題は確率論の問題じゃないと何度言わせるんだ?
>・大学の確率論を知らない、大学1~2年の同値類を学んだレベルの人だけが引っかかるのです
おまえ同値類分かってないじゃんw
同値類も分かってないサルには理解できないだけの話
もういいからサルはROMってろよ 分かってるふりしなくていいから
784:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/04 23:50:38.72 5W6wekr5.net
>>640
>ZFC公理系において、自然数全体の集合は無限集合の中で最小のものである。(可算集合)
自然数には、超限順序数 ωは含めない
なぜか?
・1つは歴史です。歴史的に無限大(∞やω)は、数として扱われていなかったw
・代数を考えると、∞やωは、演算上で異端です*)
(オッカムの剃刀以上に、異端の存在です*) )
・でも、解析(あるいは関数)を考えるときは、∞を含めた方が分り易い場合が多い
注:*)
・整数環Z、有理数体Q、には、∞は邪魔
・群としても、
”整数、有理数、実数、複素数は全て加法に関してアーベル群を成す。有理数、実数、複素数から 0 を除いたものは乗法に関してアーベル群を成す.”
なので、∞は邪魔
(解析では便利な存在です)
(参考)
URLリンク(ja.wikipedia.org)
順序数
(抜粋)
有限順序数(自然数)が通常の順序で並んでいる
すべての自然数が並び終えると、次に来るのが最小の超限順序数 ω である
URLリンク(ja.wikipedia.org)
オッカムの剃刀
(抜粋)
オッカムの剃刀とは、「ある事柄を説明するためには、必要以上に多くを仮定するべきでない」とする指針。もともとスコラ哲学にあり、14世紀の哲学者・神学者のオッカムが多用したことで有名になった。20世紀にはその妥当性を巡って科学界で議論が生じた
「剃刀」という言葉は、説明に不要な存在を切り落とすことを比喩しており、そのためオッカムの剃刀は思考節約の原理[2]や思考節約の法則、思考経済の法則とも呼ばれる
3.3 何が説明に必要であるかは自明ではない
URLリンク(ja.wikipedia.org)
拡張実数 通常の実数に正の無限大 +∞ と負の無限大 ?∞ の二つを加えた体系を言う
(抜粋)
実数全体 R におけ
785:る四則演算は、以下の規約により部分的に R ̄ まで拡張することができる https://ja.wikipedia.org/wiki/%E7%BE%A4_(%E6%95%B0%E5%AD%A6) 群 (抜粋) 具体的な群 ・整数、有理数、実数、複素数は全て加法に関してアーベル群を成す ・また有理数、実数、複素数から 0 を除いたものは乗法に関してアーベル群を成す
786:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/04 23:59:42.35 5W6wekr5.net
>>717 補足
いや、それでね
3年くらい前に
時枝をこのスレで取り上げたとき
(初期のころ)
多分数学科の人だと思うけど
「超限順序数ωを考えると
時枝不成立が分り易い」と
アドバイスがあったんだ(^^
当時、私は意味があまり取れなかったが
いま思うと「正鵠(せいこく)を?射る」だったように思う、今日この頃(^^
URLリンク(dictionary.goo.ne.jp)
正鵠(せいこく)を?射るの意味
URLリンク(gogen-allguide.com)
正鵠を射る - 語源由来辞典
787:132人目の素数さん
19/09/05 01:19:58.08 asffHquF.net
↑
ROMることさえできないバカ
788:132人目の素数さん
19/09/05 05:54:11.21 Aq2ujlSW.net
>>718
>「超限順序数ωを考えると
> 時枝不成立が分り易い」
こんな馬鹿なことをいってる時点で
数学科出身者でないことは明らかだけどね
789:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/05 06:50:22.91 RfCUEXWL.net
”確率変数”については、下記 渡辺澄夫 東工大が分り易い
”関数を出力と同一視(混同)する(X=X(w))”、出力=関数値です
サイコロの目がサイコロ(振る)の試行に対応して値が決まる関数で、1~6が関数値です
そして、例えば4とか5とか、各関数値が”確率変数”です(^^
”確率変数”だからと言って、ころころ変化するわけではない
そういう意味では、1つの試行(サイコロを振る)で、関数値が4と決まれば、それは変化しません!(^^
(>>700 大数の法則中の確率変数も見て下さい(^^ )
スレ62 スレリンク(math板:892番)
(抜粋)
”可測関数X: Ω→Ω’
・関数のことを確率変数と呼ぶ
関数を出力と同一視(混同)する(X=X(w))
関数がランダムなわけではない”
”P10 なぜこんな定義をするのか
(Ω, B, P)がわからずX だけ観測できる人には
Xがランダムである場合も含む定義になっている
そこで関数X(w) とその出力値X を同一視して
確率変数(random variable)と呼ぶことにした。
これで「ランダムでないとはいえないもの」が定義された”
確率変数と”変数”の違いが分らない人がいるな(^^;
(スレ61より スレリンク(math板:131番) )
131 名前:現代数学の系譜 雑談 古典ガロア理論も読む ◆e.a0E5TtKE [sage] 投稿日:2019/02/20(水)
過去の確率変数論争(”確率変数は箱に入れられない”)に対し、下記の説明いいね!(^^
URLリンク(watanabe-www.math.dis.titech.ac.jp)
確率論入門 渡辺澄夫 東工大 2018
(抜粋)
P8 確率変数
可測関数X: Ω→Ω’
を(Ω’に値をとる)確率変数という
・関数のことを確率変数と呼ぶ
関数を出力と同一視(混同)する(X=X(w))
関数がランダムなわけではない
P9 確率変数の気持ち
W
(Ω, B, P)
数学的に定義されるが
観測できないものとする
運(w)の決め方は
定めないでおく
↓
X=X(w)
Xの値は 実世界で ランダムでない とはいえない
つづく
790:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/05 06:50:43.78 RfCUEXWL.net
>>721
つづき
P10 なぜこんな定義をするのか
もともとランダムに値をとるということを数学的に
定義することができなくて困っていた
(Ω, B, P)がわからずX だけ観測できる人には
Xがランダムである場合も含む定義になっている
そこで関数X(w) とその出力値X を同一視して
確率変数(random variable)と呼ぶことにした。
これで「ランダムでないとはいえないもの」が定義されたがランダムとは何かについてはわからないままである
(引用終わり)
以上
791:132人目の素数さん
19/09/05 07:00:20.21 Aq2ujlSW.net
>>715
>大学3~4年で確率論・確率過程論を学べば
で、学んだことが>>664?w
ぜんぜん時枝記事と関係ないし
確率過程以前じゃんw
792:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/05 07:03:16.11 RfCUEXWL.net
793:(>>700-702より) 時枝記事の「まったく自由」を制限して 各箱には、必ず一定の確率的手法、例えば、サイコロ2個の目の和、トランプの1種類13枚からランダムに選んだ札の数・・などなどで、箱に数を入れるとします (”制限時枝問題∈時枝問題” であることを念押ししておきます) なお、これは<i.i.d. 独立同分布>(>>614ご参照)です それで、任意のi番目の箱は、確率変数Xiとして扱えます(>>700ご参照) ”サイコロ2個の目の和、トランプの1種類13枚からランダムに選んだ札の数・・” それらの確率現象に応じた確率的な取り扱いができます さて 1枚のコイントス{0,1}と分かっていれば、的中確率1/2 1個のサイコロ{0,1・・・,6}と分かっていれば、的中確率1/6 もし、実数を区間[0,1]から一様にランダムに選ぶと教えられたなら、的中確率0 となります それは、時枝さんも記事の後半に書かれている通りです(下記) 「当てられっこないではないか--他の箱から情報は一切もらえないのだから」と (参考) スレ47 https://rio2016.5ch.net/test/read.cgi/math/1512046472/ 時枝問題(数学セミナー201511月号の記事) 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない.そして箱をみな閉じる. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる.」 スレ47 https://rio2016.5ch.net/test/read.cgi/math/1512046472/22- (抜粋) 数学セミナー201511月号P37 時枝記事より 「もうちょっと面白いのは,独立性に関する反省だと思う. 確率の中心的対象は,独立な確率変数の無限族 X1,X2,X3,…である. n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって, その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら, 当てられっこないではないか--他の箱から情報は一切もらえないのだから. (引用終り)
794:132人目の素数さん
19/09/05 07:03:18.18 Aq2ujlSW.net
>>721
>”確率変数”だからと言って、ころころ変化するわけではない
まったくの誤り
ころころしないなら定数
大阪の詐欺師爆死www
795:132人目の素数さん
19/09/05 07:04:35.59 Aq2ujlSW.net
>>724
ころころしない!と言い切った瞬間、i.i.d. 独立同分布は無意味
大阪の詐欺師爆死www
796:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/05 07:34:55.94 RfCUEXWL.net
>>675
(抜粋)
2)と同じように、無限の箱に1つずつ入れていけば、かならず残りがあると言いたいみたいだね(^^
3)でも、それって、自分達の立場が、例の素人さんの立ち位置になっているという自覚があるのだろうか?
4)それハマリですよ。「無限の箱に1つずつ入れていけば、かならず残りがある」ねー、古代ギリシャか?w(^^
「自分達の立場が、例の素人さんの立ち位置になっている」w
明らかに、私の勝ち
あなたがた、墓穴です(^^;
(引用終り)
良い資料が見つかったね(下記)
これ、修士論文ですけどね
「有限試行の無限回反復」は、現代数学のスタンダードですよ
どうぞ、「修士論文」突いて(=ツツイテ)くださいw
どうぞ、この「修士論文」を否定してください!!w(^^
私は、「有限試行の無限回反復」を支持します!
(「無限回反復とは、定めた有限試行のもと、その試行を独立に無限回繰り返すことを意味する」ですよ~w)
(参考)
URLリンク(www.sci.hyogo-u.ac.jp)
濱中 裕明 研究室 兵庫教育大
URLリンク(www.sci.hyogo-u.ac.jp)
過去の修士論文タイトル一覧
URLリンク(www.sci.hyogo-u.ac.jp)
平成19年度 学位論文
有限試行の無限回反復を実現する
確率空間について
兵庫教育大学大学院 学校教育研究科
教科・領域教育専攻 自 然 系 コ ー ス
M 0 6 2 2 8 I 桑 原 利 通
(抜粋)
序文
目的
本研究の目的は、有限試行の無限回反復を実現する確率空間を構成することにある。こ
こでいう有限試行とは、サイコロや硬貨投げのような標本空間が有限集合である試行の
ことを指す。また、無限回反復とは、定めた有限試行のもと、その試行を独立に無限回
繰り返すことを意味する。そして、構成することができたこの確率空間において、大数
の強法則を定式化する。この結論を導くことが、本研究の最大のテーマである。
第 4 章 有限試行の無限回反復を実現する
確率空間について 49
(引用終り)
797:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/05 07:38:23.28 RfCUEXWL.net
>>725-726
>>727な
さあ、どうぞ、「修士論文」突いて(=ツツイテ)くださいw
どうぞ、この「修士論文」を否定してください!!w(^^
私は、「有限試行の無限回反復」を支持します!
(「無限回反復とは、定めた有限試行のもと、その試行を独立に無限回繰り返すことを意味する」ですよ~w)
1回を無限回繰り返す
可算無限達成ww(^^
798:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/05 07:43:54.37 RfCUEXWL.net
>>728 補足
(引用開始)
(「無限回反復とは、定めた有限試行のもと、その試行を独立に無限回繰り返すことを意味する」ですよ~w)
1回を無限回繰り返す
可算無限達成ww(^^
(引用終り)
これ、"独立同分布(IID)"な (∵「その試行を独立に無限回繰り返すことを意味する」)
(参考)
URLリンク(ja.wikipedia.org)
独立同分布(IID)
799:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/05 10:26:53.39 Aa/VyQgb.net
>>729 追加
下記東大 会田茂樹 PDFより
「(3) 無限回のサイコロ投げ
何回も独立に
サイコロ投げを続けることを考える. その試行の結果として、1~6 の数字の無限列が現れる.
この無限列一つ一つが根元事象とみなせる.」
同じことを、何回も独立に繰り返す
これぞ、"独立同分布(IID)"!!ww(^^
こんな程度、そこらの大学レベルの確率論のテキストには、どこにでも書いてある
そして、”無限回のサイコロ投げ”は、無限個のサイコロを用意して、一斉に投げて一回で終わらせることもできる
現代数学としての扱いは同じ
そんな程度のことは、大学レベルの確率論を学べば、初歩の初歩
「ころころしないなら定数」
「ころころしない!と言い切った瞬間、i.i.d. 独立同分布は無意味」
か? 寝言は寝ていえ!w 幼稚園からやり直せw(^^
(参考)
URLリンク(www.ms.u-tokyo.ac.jp)
800:-j.html 会田茂樹 東京大学大学院数理科学研究科 https://www.ms.u-tokyo.ac.jp/~aida/lecture/log.html 平成24年度 数理統計学 https://www.ms.u-tokyo.ac.jp/~aida/lecture/24/lecture2012.pdf 数理統計学 講義資料 会田茂樹 東京大学 (抜粋) P2 1.2 現代的な確率の定義 (3) 無限回のサイコロ投げ 有限回だけサイコロを振る場合や根元事象の数が有限個のとき, (1), (2) で見たようにラプラス流の確率 で間に合う(根元事象の確率がすべて等しい場合も考えるというふうに一般化していますが). 何回も独立に サイコロ投げを続けることを考える. その試行の結果として、1~6 の数字の無限列が現れる. この無限列一つ一つが根元事象とみなせる. すなわち Ω は Ω = { a1, a2, ・ ・ ・ , an, ・ ・ ・) | ai = 1, ・ ・ ,6 } F とP の定義は簡単ではないが、うまく定義することができる. 説明すると長くなるので、省略するがこのような無限回の試 行を考えるとラプラス流の確率の定義では収まらず、 Kolmogorov 流の確率空間の定義を採用しなければな らないのである. (引用終り)
801:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/05 13:06:35.37 Aa/VyQgb.net
>>730 追加
東大 会田茂樹 PDFより
「(3) 無限回のサイコロ投げ
何回も独立に
サイコロ投げを続けることを考える. その試行の結果として、1~6 の数字の無限列が現れる.
この無限列一つ一つが根元事象とみなせる.」
(>>725-726より)
「ころころしないなら定数」
「ころころしない!と言い切った瞬間、i.i.d. 独立同分布は無意味」
か?
<会田茂樹>
同じことを、何回も独立に繰り返す
これぞ、"独立同分布(IID)"!!
東大 会田茂樹のサイコロってさ
サイコロ投げってさ、”ころころ”して、ずっと回転してんのか?(^^
いやね、なんでテキストに書いてある「確率変数の定義」を確認しないのかね?
いやね、自分で「確率変数の定義」を書くのはありだと思うよ、ドクター論文書くならね
しかし、既存の標準的な確率論の話でさ、
テキストに書いてある「確率変数の定義」をなんで確認しないの?
(>>725-726より)
「ころころしないなら定数」とか
「ころころしない!と言い切った瞬間、i.i.d. 独立同分布は無意味」とか
確率を論じる最低限のレベルに行っていないないわな、おまえw(^^
802:132人目の素数さん
19/09/05 19:07:08.92 Aq2ujlSW.net
>>731
>なんでテキストに書いてある「確率変数の定義」を確認しないのかね?
なんで自分が引用した文章に書いてある「根元事象」を確認しないのかね?
>>730
「無限列一つ一つが根元事象とみなせる」
【根元事象】
試行で確定する結果の1つだけによって表される事象.
つまりその事象に該当する結果の集合がただ1つの要素からなるもの.
つまり、
「無限列一つ一つが根元事象」
=「無限列一つ一つが一つの結果」
=「無限列一つがころころの一つの”ころっ”」
ころころしまくってますねw
803:132人目の素数さん
19/09/05 19:57:30.67 v1JL3zj2.net
>>727
>>728
それは無限回の試行の結果の数字を「1つずつ」箱に入れてないでしょ
問題点は無限回の試行の結果の数字を箱に入れる場合に
無限個の箱に「1つずつ」入れていけば入れ終えることができるか
たとえば両面に0が書いてあるコイントスを考えて
{0, 0, ... , 0, ... }を「有限試行の無限回反復」とみなすことはOK
しかし{1, 2, ... , n, ... }の最初の項から「1つずつ」0に変えていっても
{0, 0, ... , 0, n+1, n+2, ... }を{0, 0, ... , 0, ... }にすることは出来ない
(自然数 = 空の 箱の番号とする)
だからこの場合はしっぽが全て0であるような同値類を選んではじめて
> 1回を無限回繰り返す
とみなせるが同値類を選ぶには無限個の数字を同時に選ぶ必要がある
サイコロを無限回振ってその出目を箱に入れるのならばその無限個の出目が属する同値類を1つ選んではじめて
> 1回を無限回繰り返す
とみなせるがこれはある番号以降の出目をあらかじめ予測していることに等しい
(だから時枝戦略で数当てが出来てもマジックでもなんでもない)
804:132人目の素数さん
19/09/05 21:14:48.71 asffHquF.net
>>721
確率変数の定義が問題なのではない
サルが時枝解法の確率変数を分かっていないことが問題なのだ
「さて, 1~100 のいずれかをランダムに選ぶ. 」→ Ω={1,...,100}, P(∀i∈Ω)=1/100
805:132人目の素数さん
19/09/05 21:23:24.60 asffHquF.net
>>724
>それで、任意のi番目の箱は、確率変数Xiとして扱えます
無意味
なぜなら「勝つ戦略はあるでしょうか?」に何も答えられないので
サルは頭悪いね
806:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/05 21:36:16.60 RfCUEXWL.net
ふーん、3人ね(^^
・一人は、>>2 のサイコパス >>732 のID:Aq2ujlSW
・一人は、>>3のHigh level peopleと名付けた人、>>735 のID:asffHquF
・一人は、>>733の ID:v1JL3zj2で、多分 >>3のHigh level peopleのもう一人かな?(^^
まあ、そこらの細か�
807:「点は、本筋ではないけどねw
808:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/05 21:36:52.49 RfCUEXWL.net
>>733
(引用開始)
それは無限回の試行の結果の数字を「1つずつ」箱に入れてないでしょ
問題点は無限回の試行の結果の数字を箱に入れる場合に
無限個の箱に「1つずつ」入れていけば入れ終えることができるか
たとえば両面に0が書いてあるコイントスを考えて
{0, 0, ... , 0, ... }を「有限試行の無限回反復」とみなすことはOK
(引用終り)
ええ、>>727(下記再録)桑原利通 P39
硬貨をn 回投げる試行 ω = (i1, i2, ・ ・ ・ , in) ik∈{0, 1}, 1 <= k <= n
無限回硬貨投げ試行 ω = (i1, i2, ・ ・ ・) : ik∈{0, 1}, k ∈ N
”n回”投げるです
”無限回”硬貨投げです
よろしいですね
あと、>>730 東大 会田茂樹 PDFもご参照下さい
「(3) 無限回のサイコロ投げ
何回も独立に
サイコロ投げを続けることを考える. その試行の結果として、1~6 の数字の無限列が現れる.
この無限列一つ一つが根元事象とみなせる. すなわち
Ω は Ω = { a1, a2, ・ ・ ・ , an, ・ ・ ・) | ai = 1, ・ ・ ,6 }」
さらに、追加で会田茂樹 PDF P3 10行目
「なんらかのランダムな現象や試行があり、その結果得られる数値一つ一つが
根元事象を、数値全体が標本空間になっていることを注意しておきます. このランダムな数値が確率変数,
ランダムな数値がどのように分布しているかを表すのが確率分布になります.」
も見ておいてください
(>>727より)
URLリンク(www.sci.hyogo-u.ac.jp)
平成19年度 修士 学位論文 有限試行の無限回反復を実現する確率空間について 兵庫教育大学大学院 M 0 6 2 2 8 I 桑原利通
(抜粋)
P39
3.1 初等確率モデル
例3.2 硬貨をn 回投げる試行の標本空間は
Ωn ={ω = (i1, i2, ・ ・ ・ , in) : ik∈{0, 1}, 1 <= k <= n} (3.1)
である。
例3.3 無限回硬貨投げ試行の標本空間は
Ω ={ω = (i1, i2, ・ ・ ・) : ik∈{0, 1}, k ∈ N} (3.2)
である。
809:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/05 21:44:00.34 RfCUEXWL.net
>>732
>ころころしまくってますねw
別に、”ころころ”しまくっていても、そういう国語表現は枝葉のことでね
(>>730より)
数理統計学 講義資料 会田茂樹 東京大学
(3) 無限回のサイコロ投げ
何回も独立に
サイコロ投げを続けることを考える. その試行の結果として、1~6 の数字の無限列が現れる.
この無限列一つ一つが根元事象とみなせる. すなわち
Ω は Ω = { a1, a2, ・ ・ ・ , an, ・ ・ ・) | ai = 1, ・ ・ ,6 }
(引用終り)
これで尽きている
1)「無限回のサイコロ投げ」と、会田茂樹(東京大学)に書かれていること
2)そして、「サイコロ投げを続けることを考える. その試行の結果として、1~6 の数字の無限列が現れる」
3){ a1, a2, ・ ・ ・ , an, ・ ・ ・) | ai = 1, ・ ・ ,6 }と書かれている
この” a1, a2, ・ ・ ・ , an, ・ ・ ・” の1~6 の数字の無限列
これを時枝の箱に入れることができる。1~6 の数字がころころ変わるわけではない
QED
810:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/05 21:44:25.84 RfCUEXWL.net
>>735
はい、がんばってくださいw(^^;
811:132人目の素数さん
19/09/05 21:52:13.46 asffHquF.net
>>739
あれ?痛いところ突かれてまた発狂?
812:132人目の素数さん
19/09/05 22:14:44.51 v1JL3zj2.net
>>737
> ”無限回”硬貨投げです
1回ずつ投げて無限回にするってどこに書いてあるの?
> k ∈ N
Nがすでにあるのだから
すでに投げ終わった状態しか扱っていないでしょ
Nには無限公理とペアノの公理が必要
任意の自然数nに対してn+1以降は可算無限集合である
{1, 2, ... , n} {n+1, n+2, ... }
{n+1, n+2, ... }の部分はまとめて公理的に与える必要がある
>>738
> この” a1, a2, ・ ・ ・ , an, ・ ・ ・” の1~6 の数字の無限列
> これを時枝の箱に入れることができる。1~6 の数字がころころ変わるわけではない
試行の結果の数字を無限個の箱に「1つずつ」入れていけば入れ終えることができるか?
ってことだよ
813:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/06 00:40:18.97 x3fmkWer.net
>>103
遠隔レスだが
「数学的帰納法に反例が存在する」について
1)まず、自然数とは?
(>>638より)「ZFC公理系において、自然数全体の集合は無限集合の中で最小のものである。(可算集合)」
別の言葉で、「0から始まる後続者たち、有限順序数を全てからなる集合」ともいえる
自然数の元は、すべて有限順序数である!!
2)で、いわゆる「数学的帰納法の反例」なるものは、すべて極限n→∞で、有限順序数nの外に出てしまっているのだ
3)例えば、
・逆三角関数で、y=acrtan(n)を考えると、lim n→∞ acrtan(n)=π/2 だが、
任意の有限順序数nで acrtan(n)<π/2 だ
(maxとsupの差もご参照)
・無理数が、有理数のコーシー列で定義されるというのも同じ。
任意の有限順序数nの範囲では、あくまで有理数にすぎない
(数学的帰納法の反例にはならない)
・あと、昔あったのが、「開集合の無限個の共通部分が1点に潰れて閉集合になる」というのが反例だという
(例えば下記 第3章 位相空間の基礎のキソ Tomoki Kawahira 東工大)
これも、任意の有限順序数nの範囲では、あくまで共通部分は開集合であって、数学的帰納法の反例にはならない
QED (^^
(参考)
URLリンク(w.atwiki.jp)
講義に関する情報
逆三角関数のグラフとその主な値
URLリンク(mathtrain.jp)
高校数学の美しい物語
2016/05/18
sup(上限)とinfの意味,maxとの違い
URLリンク(www.math.titech.ac.jp)
Tomoki Kawahira / Department of Mathematics / Tokyo Institute of Technology
URLリンク(www.math.titech.ac.jp)
多様体の基礎のキソ (仮題)(ver.20170131)
URLリンク(www.math.titech.ac.jp)
第3章 位相空間の基礎のキソ(ver.20170131)
(抜粋)
(O2): 有限個の開集合
ここで,有限個の開集合という条件ははずせない.たとえば,R
2 における無限個の開円板
Bn := {(x, y) ∈ R^2 : x^2 + y^2 < 1/n}(n = 1, 2, . . .)
の共通部分を考えてみるとよい.それは原点ただ一点であり,開集合とはならないのである.
(引用終り)
814:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/06 00:48:05.38 x3fmkWer.net
>>741
>> ”無限回”硬貨投げです
> 1回ずつ投げて無限回にするってどこに書いてあるの?
普通は、硬貨1枚で繰返しますよ
無限枚の硬貨が用意できるほどの大金持ちはいませんからw(^^
もっとも、サイコロなら、無限個用意できるかもしれませんね(^^;
しかし、数学的には、1個のサイコロを繰返し振るのと
同じ品質のサイコロを無限個用意して一斉に振るのとは
数学の確率としては等価と考える場合が多いですよ
(参考:時に最後の”注”な(^^; )
URLリンク(mathtrain.jp)
大数の法則の具体例と証明 高校数学の美しい物語 2019/07/14
(抜粋)
大数の法則のサイコロでの例
サイコロ投げの例で大数の法則について考えてみます。
サイコロを1回ふると,出る目の平均は (1+2+3+4+5+6)/6=3.5 です。
ただし,1が出るかもしれませんし,6が出るかもしれません。
しかし,試行回数を増やしていくと,出た目の平均はどんどん 3.5 に近づきます。
つまり,サイコロを10000回くらい振ってみると
(きちんとしたサイコロなら)
サンプル平均(出た目の平均)が 3.5 にかなり近くなってきます。
もう少しきちんと述べると,以下のようになります。
それぞれの目が出る確率が 1/6 であるようなサイコロを考える。
i 回目に出た目を Xi(確率変数)とおくと,X1,X2,・・・ たちはそれぞれ独立に同一の分布(平均は μ=3.5)に従う。
このとき,n 回目までに出た目の算術平均 (X1+X2+・・・+Xn)/n は μ にどんどん近づいていく(偏る確率は0に収束する)。
注
実際にサイコロ10000回投げるのは無理ですね。サイコロを10000個同時に投げるのなら可能かもしれませんね。
815:132人目の素数さん
19/09/06 01:49:54.05 2FZZpVr1.net
>>742
だからサルのインチキ数学的帰納法は間違いってことじゃん
バカですか?
816:132人目の素数さん
19/09/06 02:16:22.16 hPDyvlKG.net
>>743
スレ主らしさ満点のレスだけれども
出た目の数字を箱にどうやって入れるかということですよ
>>741
> 試行の結果の数字を無限個の箱に「1つずつ」入れていけば入れ終えることができるか?
> ってことだよ
わざわざ質問して時枝戦略を否定するきっかけを与えているんですがね
817:132人目の素数さん
19/09/06 06:01:38.79 j8Bzvcu+.net
>>738
>>ころころしまくってますねw
>別に、”ころころ”しまくっていても、
>そういう国語表現は枝葉のことでね
いや、まったく根幹のことだけどね
ころころしまくる、つまり確率変数なら非可測により確率計算は不能だが
接着剤つけて固定、つまり定数なら確率99/100だよ
つまり、何の確率か、を君が誤解してるってことさ
正しいのは、中身と代表元が一致する箱(をもつ列)を選ぶ確率
中身を当てる確率だという君の思い込みは幼稚な誤りw
いい加減気づけよ馬鹿w
818:132人目の素数さん
19/09/06 06:04:16.31 j8Bzvcu+.net
>>742
>いわゆる「数学的帰納法の反例」なるものは、
>すべて極限n→∞で、有限順序数nの外に出てしまっている
今頃気づいたのか?この馬鹿w
あたりまえじゃん ∞は自然数じゃないんだからw
だから本当は反例なんかじゃないんだよ
貴様が馬鹿だから、∞が自然数だと間違っただけw
819:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/06 07:17:49.06 x3fmkWer.net
>>745
>出た目の数字を箱にどうやって入れるかということですよ
申し訳ないけど、某素人さん?
再録(>>737より)
>>730 東大 会田茂樹 PDFもご参照下さい
「(3) 無限回のサイコロ投げ
何回も独立に
サイコロ投げを続けることを考える. その試行の結果として、1~6 の数字の無限列が現れる.
この無限列一つ一つが根元事象とみなせる. すなわち
Ω は Ω = { a1, a2, ・ ・ ・ , an, ・ ・ ・) | ai = 1, ・ ・ ,6 }」
さらに、追加で会田茂樹 PDF P3 10行目
「なんらかのランダムな現象や試行があり、その結果得られる数値一つ一つが
根元事象を、数値全体が標本空間になっていることを注意しておきます. このランダムな数値が確率変数,
ランダムな数値がどのように分布しているかを表すのが確率分布になります.」
も見ておいてください
(引用終り)
これで尽きているでしょ?
無限回のサイコロ投げ、1回投げる毎に入れる。それだけ
>>>741
> 試行の結果の数字を無限個の箱に「1つずつ」入れていけば入れ終えることができるか?
> ってことだよ
できます!(^^
上記の東大 会田茂樹 PDF 「(3) 無限回のサイコロ投げ」です。これで終わっている
これ否定したいの? まるで、某素人さんですよねw
なお、>>742より自然数Nは集合としては無限集合だけれども、その元はすべて有限順序数nですよ。念のため
また、>>664もご参照ください。もっとも、某素人さんの立場だと、理解できないでしょうね(^^
追伸
無益な論争を終結させるために書いておく
1)一個のサイコロを無限回投げることは、上記の通り可能だが、無限個のサイコロを用意して投げることも可能
(>>734の通り)
2)従って、無限の箱を用意したやり方と同じやり方で、サイコロ投げが可能
一個ずつなら一回ずつ投げる。一気に無限個用意したなら、サイコロも無限個のサイコロを用意すれば良い
3)「無限回のサイコロ投げ」を否定する方向で、時枝成立をいうのは、矛盾ですよ
以上
820:132人目の素数さん
19/09/06 07:21:33.27 j8Bzvcu+.net
>>748
>「なんらかのランダムな現象や試行があり、
>その結果得られる数値一つ一つが根元事象
自爆発言止まらずwwwwwww
時枝記事では無限数列は一試行毎に変化する値ではない
一試行毎に変化すると思い込む貴様一匹が大馬鹿野郎wwwwwww
821:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/06 07:21:54.48 x3fmkWer.net
>>746
(引用開始)
>>ころころしまくってますねw
>別に、”ころころ”しまくっていても、
>そういう国語表現は枝葉のことでね
いや、まったく根幹のことだけどね
ころころしまくる、つまり確率変数なら非可測により確率計算は不能だが
接着剤つけて固定、つまり定数なら確率99/100だよ
つまり、何の確率か、を君が誤解してるってことさ
(引用終り)
いやー、申し訳ないけど
再録(>>737より)
>>730 東大 会田茂樹 PDFもご参照下さい
「(3) 無限回のサイコロ投げ
何回も独立に
サイコロ投げを続けることを考える. その試行の結果として、1~6 の数字の無限列が現れる.
この無限列一つ一つが根元事象とみなせる. すなわち
Ω は Ω = { a1, a2, ・ ・ ・ , an, ・ ・ ・) | ai = 1, ・ ・ ,6 }」
さらに、追加で会田茂樹 PDF P3 10行目
「なんらかのランダムな現象や試行があり、その結果得られる数値一つ一つが
根元事象を、数値全体が標本空間になっていることを注意しておきます. このランダムな数値が確率変数,
ランダムな数値がどのように分布しているかを表すのが確率分布になります.」
も見ておいてください
(引用終り)
これで尽きているでしょ?
無限回のサイコロ投げ、1回投げる毎に入れる。それだけですよ
東大 会田茂樹のサイコロは、「サイコロ投げ」でころころしまくる?w
電気仕掛けで、回転して止まらない?
そんなことはないでしょ?
普通のサイコロで、投げたら止まる
当たり前
QED (^^
822:132人目の素数さん
19/09/06 07:26:15.36 j8Bzvcu+.net
>無限回のサイコロ投げ、1回投げる毎に入れる。それだけですよ
一回の試行毎に数列の値が変わる
そう言い切った瞬間
貴様が時枝問題を誤読したと露見
馬鹿の貴様は負けましたwww
馬鹿の貴様は死にましたwww
823:132人目の素数さん
19/09/06 07:29:02.07 j8Bzvcu+.net
>>750
「止まらない」に固執する馬鹿wwwwwww
あのな、
「時枝問題では一回ごとにサイコロ投げて箱の中身をいちいち変える」
が貴様の馬鹿丸出しの誤解だといってるんだよwwwwwww
中身はどの試行でも変わらないの
コロコロしないの、固定なの
だから確率変数じゃないの 定数なの
いい加減分かれよ この馬鹿wwwwwww
824:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/06 07:30:49.11 x3fmkWer.net
サイコパスの屁理屈、面白いわ
難癖つける性格まるだしだね
アホまるだしだけどね(^^
さあ、踊って踊って、難癖おどりを by サル回しのスレ主よりw(^^
825:132人目の素数さん
19/09/06 07:33:13.35 j8Bzvcu+.net
>>753
馬鹿の妄想 つまらんわwwwwwww
わけもわからず言い張るつ性格 完全にパラノイアwwwwwww
馬鹿というか完全にキチガイ
さあ、狂え狂え、妄想ヘドバンwww by 地獄のメタラー( ̄ー ̄)
826:132人目の素数さん
19/09/06 07:35:51.10 j8Bzvcu+.net
今日の一曲w
URLリンク(www.youtube.com)
「時枝記事の箱の中身は確率変数!!!」
と発狂しつづけるキチガイにおくる( ̄ー ̄)
827:132人目の素数さん
19/09/06 07:42:00.01 j8Bzvcu+.net
これからヤツのことをこう呼ぶか
"Rotting One" (腐ってる1)
828:132人目の素数さん
19/09/06 07:52:17.44 hPDyvlKG.net
>>748
> できます!(^^
「1つずつ」だから当然極限はとらずにですよ?
後続が無限(回)になるような自然数は存在しないのにできるのですか?
>>742
> 無理数が、有理数のコーシー列で定義されるというのも同じ。
> 任意の有限順序数nの範囲では、あくまで有理数にすぎない
なんでしょ
たとえば e = 2.71828... は無限小数 = 無限数列(cf. game1)
すると2.7や2.71および2.718は後ろに0を無限個つけて無限小数と見れば
全て同値類が等しいが無限小数 e = 2.71828... とは同値類は一致しない
「1つずつ」では同値類は変化しないのにたとえば2.718...000...00...の同値類を
無限小数 e = 2.71828...の同値類にどうやってスレ主は変化させるのかが
知りたいのです
829:132人目の素数さん
19/09/06 08:28:25.66 2FZZpVr1.net
「さて, 1~100 のいずれかをランダムに選ぶ.」
が一回の試行
試行毎に変わるのは1~100のどれが選ばれるか
もちろん箱の中身は変わらない
サルは頭が悪くて理解できない
830:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/06 10:13:03.90 oajZ79uB.net
(>>736より)
3人ね(^^
・一人は、>>2 のサイコパス >>732 のID:Aq2ujlSW
・一人は、>>3のHigh level peopleと名付けた人、>>735 のID:asffHquF
・一人は、>>733の ID:v1JL3zj2で、多分 >>3のHigh level peopleのもう一人かな?(^^
(引用終り)
1)サイコパス ピエロちゃん
彼のサイコロは、電動でクルクル回り続けるみたいだね
しかし、そんなサイコロしか現代数学の確率論では扱えなかったのか、はてw?(^^
2)のHigh level peopleと名付けた人、>>735 のID:asffHquFさん、とにかく「時枝成立」しか言わなくなったね
(それしか言えなくなったみたい)
3)>>733の ID:v1JL3zj2で、多分 >>3のHigh level peopleのもう一人
多分この人が、「(外測度を使った)測度論的確率論で正当化できて、パラドクスも説明できる」と言い出した人でしょうね
この人は、いま、サイコロの目は時枝の無限個の箱には入れられないと主張しています
時枝成立派とか言っても
いまや、三人だけになった(^^
三人の主張は微妙に違う
831:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/06 10:18:36.76 oajZ79uB.net
>>757
(引用開始)
「1つずつ」だから当然極限はとらずにですよ?
後続が無限(回)になるような自然数は存在しないのにできるのですか?
(引用終り)
できます
(>>750より再録)
いやー、申し訳ないけど
再録(>>737より)
>>730 東大 会田茂樹 PDFもご参照下さい
「(3) 無限回のサイコロ投げ
何回も独立に
サイコロ投げを続けることを考える. その試行の結果として、1~6 の数字の無限列が現れる.
この無限列一つ一つが根元事象とみなせる. すなわち
Ω は Ω = { a1, a2, ・ ・ ・ , an, ・ ・ ・) | ai = 1, ・ ・ ,6 }」
さらに、追加で会田茂樹 PDF P3 10行目
「なんらかのランダムな現象や試行があり、その結果得られる数値一つ一つが
根元事象を、数値全体が標本空間になっていることを注意しておきます. このランダムな数値が確率変数,
ランダムな数値がどのように分布しているかを表すのが確率分布になります.」
も見ておいてください
(引用終り)
これで尽きているでしょ?
無限回のサイコロ投げ、1回投げる毎に入れる。それだけですよ
URLリンク(www.ms.u-tokyo.ac.jp)
数理統計学 講義資料 会田茂樹 東京大学
(抜粋)
832:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/06 10:39:44.69 oajZ79uB.net
>>757
(引用開始)
> 無理数が、有理数のコーシー列で定義されるというのも同じ。
> 任意の有限順序数nの範囲では、あくまで有理数にすぎない
なんでしょ
たとえば e = 2.71828... は無限小数 = 無限数列(cf. game1)
すると2.7や2.71および2.718は後ろに0を無限個つけて無限小数と見れば
全て同値類が等しいが無限小数 e = 2.71828... とは同値類は一致しない
「1つずつ」では同値類は変化しないのにたとえば2.718...000...00...の同値類を
無限小数 e = 2.71828...の同値類にどうやってスレ主は変化させるのかが
知りたいのです
(引用終り)
1)そこまず、時枝問題とは無関係ですよ
下記、「どんな実数を入れるかはまったく自由」なので
例えば、超越数を入れる必要なし。サイコロの目、1~6だけをランダムに繰り返し入れれば良い!
(いや、そもそも、サイコロの目を無限の箱に入れることが不可能という人が、どうやって箱にそんな超越数を入れることができるのですか? その手段を述べるのが先でしょw)
2)? あと「たとえば2.718...000...00...の同値類を
無限小数 e = 2.71828...の同値類にどうやってスレ主は変化させるのか」?
それ、例えば、その一桁ずつの数、eで、2,7,1,8,2,8・・・達を箱に入れるってこと?
でも、”2.718...000...00...の同値類”は、
” 2.71828...の同値類”には
「変化」しないと思いますよw。それ意味わからんw(^^
(いや、そもそも、サイコロの目は箱に入れられないと言っていた人が、どうやって
eで、2,7,1,8,2,8・・・達を箱に入れることができるのか?w(^^ )
(参考)
スレ47 スレリンク(math板)
時枝問題(数学セミナー201511月号の記事)
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.」
833:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/06 10:44:50.25 oajZ79uB.net
>>759 補足
> 1)サイコパス ピエロちゃん
> 彼のサイコロは、電動でクルクル回り続けるみたいだね
> しかし、そんなサイコロしか現代数学の確率論では扱えなかったのか、はてw?(^^
考えてみると
確率論のテキストに出てくるサイコロは
そもそも特別の電動サイコロじゃないよね
ごく普通のサイコロでしょ
東大 会田茂樹先生(>>760)のサイコロも、投げたら止まるよきっとw(^^
834:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/06 13:41:49.59 oajZ79uB.net
URLリンク(www.nikkei.com)
AI活用の「虎の子」方法論、三菱ケミHDが無償公開
2019/9/5 4:30日本経済新聞 電子版
(抜粋)
■成功するための12項目
「当社が直近の約2年間で手掛けた数十件の機械学習プロジェクト経験を基に、失敗しないために何をどう定義すべきかをまとめた」と、機械学習プロジェクトキャンバスを考案した三菱ケミHDの磯村哲チーフコンサルタント/データサイエンティストは言う。
機械学習プロジェクトキャンバスは、実現したいビジネスモデルを可視化するための「ビジネスモデルキャンバス」になぞらえて作られたもの。「目的・目標」「成功の指標」「利用者」など12項目を、決めるべき事項として規定。各項目の記述内容や記述時の考慮点、記述例などを解説している。
URLリンク(article-image-ix.nikkei.com)
三菱ケミHDが考案した「機械学習プロジェクトキャンバス」(出所:三菱ケミカルホールディングス)
■「AIに強い会社」 人材獲得にアピール
三菱ケミHDは2017年4月に、日本IBMの東京基礎研究所所長などを歴任した岩野和生氏を最高デジタル責任者(CDO)として招へいして以来、DXプロジェクト推進についての独自の方法論を考案している。
それらの方法論のうち「化学企業としての業務ノウハウではない部分については、無償で公開している」(磯村データサイエンティスト)。機械学習プロジェクトキャンバスの一般公開もその一環だ。今回の公開によって直接何らかの対価を期待しているわけではないという。
しかし、機械学習プロジェクトキャンバスの公開は三菱ケミHDにとって様々な面でプラスに働くはずだ。最も大きいのはAI人材の獲得だろう。
今やIT企業ではない会社を含めてAI人材の獲得競争が激化している。そんな中、三菱ケミHDは人工知能学会の会長である浦本直彦氏がチーフ・デジタル・テクノロジー・サイエンティストを務めていることなどから「AIに強い会社」として存在感を高めている。
835:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/06 13:48:08.55 oajZ79uB.net
URLリンク(www.nikkei.com)
AI起業家生む東大・松尾研 本郷をHONGOへ
華麗なるAI人脈(4)
2019/9/1 2:03 (2019/9/5 2:00更新)日本経済新聞 電子版
(抜粋)
数多くの歴史的建造物を残す東京大学の本郷キャンパス(東京・文京)。その象徴ともいえる安田講堂のすぐ隣、工学部2号館に日本の未来を担うであろうスタートアップ企業を次々に生み出す研究室がある。
同大教授で人工知能(AI)研究の第一人者、松尾豊(44)が運営する通称「松尾研」だ。アカデミアにありながら産業に活力をもたらそうと奔走する松尾研は、いま日本の大学で最も注目度の高い研究室といってよいかもしれない。
【関連記事】ロボットからAIへ グーグルが認めた日本人の挑戦
「ベンチャー企業を輩出し、新技術を社会に還元することで、新しい産業のエコシステム(生態系)を作り上げること」。松尾研のウェブサイトにこう記されている。なぜ起業家の育成に力を入れるのか。そこには松尾の研究者としての生い立ちが関係している。
■哲学的な思考にふけった高校時代
「デカルトの『我思う、ゆえに我あり』じゃないですけど、そんなことをよく考えていた」。理系の研究者でありながら香川県立丸亀高校時代の松尾は哲学少年だった。
「自分とは何者なのか」「本当に自分が見ているものは存在するのか」。多くの哲学書を読みあさりながら、根源的な問いに頭を巡らせていた。AIに興味を抱いたのも、コンピューターで人間の知能に迫るという哲学にも似た冒険が「めちゃくちゃエキサイティング」と胸に刺さったからだ。
だが、松尾が東大で研究者の道を歩み始めた2000年前後はAIの「冬の時代」。周囲の関心は薄かった。博士課程を修了し、02年に政府系機関の産業技術総合研究所に入った松尾は、苦い経験を味わうことになる。
つづく
836:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/06 13:51:11.59 oajZ79uB.net
>>764
つづき
NGワードらしいので削除した
が連携して初めて世界と勝負できる、両輪の関係だとわかった。
(引用終り)
以上
837:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/06 16:34:24.51 oajZ79uB.net
>>763 追加
旧聞の焼き直しか
URLリンク(www.nikkan.co.jp)
三菱ケミHD、AI実装“落とし穴”防ぐ フレームワーク公開 日刊工業新聞 2019/7/22
三菱ケミカルホールディングス(HD)は、人工知能(AI)の一種である機械学習の実務への実装を助けるフレームワーク「機械学習プロジェクトキャンバス」を考案し、ホームページ上で一般公開する。AIを開発しても実際の業務に合わずに使えないという失敗を防ぐため、思考やコミュニケーションの手...
(残り:481文字/本文:621文字
URLリンク(tech.nikkeibp.co.jp)
人工知能学会2019報告
AI学会速報、三菱ケミカルHDの学会長が明かしたAIの限界と課題 浅川 直輝=日経 xTECH/日経コンピュータ 2019/06/05
人工知能学会は2019年6月4日、新潟県の朱鷺メッセで第33回全国大会を開催した。冒頭に同会会長で三菱ケミカルホールディングス 先端技術・事業開発室 デジタルトランスフォーメーショングループ Chief Digital Technology Scientistの浦本直彦氏が登壇。三菱ケミカルにおけるデジタル改革の経験を披露しつつ、現在のAI技術が抱える限界について持論を述べた。
URLリンク(cdn-tech.nikkeibp.co.jp)
人工知能学会の浦本直彦会長
浦本会長は日本IBM東京基礎研究所などを経て2017年6月に三菱ケミカルホールディングスに移籍。2018年に人工知能学会の会長に就任した。1986年に発足した同学会で、17代目にして初となる民間企業所属の会長である。
同学会の正会員数は第3次AIブームが始まった2012年以降、右肩上がりで伸びている。2019年3月時点でピーク時を超えて4500人超に達した。
URLリンク(cdn-tech.nikkeibp.co.jp)
人工知能学会の正会員数と学生会員数の推移
企業が加盟する「賛助会員」の数は輪をかけて急上昇している。2019年3月時点で、2011年比10倍近い249�
838:ミに伸びた。AI技術に企業がかつてない熱視線を注いでいるのが分かる。 https://cdn-tech.nikkeibp.co.jp/atcl/nxt/column/18/00802/060500001/3.jpg?__scale=w:500,h:354&_sh=01c0bc07c0 賛助会員数の推移
839:132人目の素数さん
19/09/06 19:41:38.13 j8Bzvcu+.net
>>759
>3人ね
1人増w
>1)彼のサイコロは、電動でクルクル回り続けるみたいだね
「1試行毎に異なる目を出す」という意味では正しい
「電動でクルクル回ってるから目が読めない」という意味なら誤りw
> しかし、そんなサイコロしか現代数学の確率論では扱えなかったのか
確率論で扱うのは「1試行毎に異なる目を出すサイコロ」
どの試行でも同じ目を出すサイコロなら確率論で扱う対象ではない
840:132人目の素数さん
19/09/06 19:42:16.96 j8Bzvcu+.net
>>759
>2)とにかく「時枝成立」しか言わなくなったね
>(それしか言えなくなったみたい)
「箱の中身が定数」という事実を否定する
ウソツキにはいう言葉がないだろうw
841:132人目の素数さん
19/09/06 19:42:45.91 j8Bzvcu+.net
>>759
>3)多分この人が、
>「(外測度を使った)測度論的確率論で正当化できて、パラドクスも説明できる」
>と言い出した人でしょうね
その人かどうかは知らないが
時枝記事で、箱の中身を定数と考えた場合に正当なので
箱の中身を確率変数とした「より強い主張」での正当化は必要ない
(Prussの主張は、箱の中身を確率変数とした場合に
非可測性により正当化できないということであって
この主張自体はもっともであるが、
Riddleおよび時枝記事では箱の中身は定数だから
Prussの主張によって否定されることはない)
>この人は、いま、サイコロの目は時枝の無限個の箱には入れられないと主張しています
単に
「数学的帰納法で、P(∞)も証明できる」
というトンデモ主張に対する「まっとうな」反論だろw
サイコロの目を無限個の箱に入れられる根拠は数学的帰納法ではなく無限公理
数学的帰納法=無限公理、と思ってる馬鹿は、貴様一匹だけw
842:132人目の素数さん
19/09/06 19:43:18.35 j8Bzvcu+.net
>>760
無限公理を前提とした主張(T大のA田氏のテキスト)
は根拠にならないよ
キミは自分が何をいったかわかってないようだね
キミは「数学的帰納法によって無限公理が「定理」として証明できる」といったんだよw
で、ボクは以前>>623で、全く反対のこと、つまり
「数学的帰納法によって、{}および{}から1つずつ要素を追加した集合が
無限公理で存在を主張している集合の性質を有しない」
を証明してあげたはずだが、理解できなかったかね?
だとしたら・・・頭悪いなw
843:132人目の素数さん
19/09/06 20:00:40.89 hPDyvlKG.net
>>761
> サイコロの目を無限の箱に入れることが不可能という人
スレ主らしい曲解したレスですが「1つずつ」無限個を入れることが不可能ですよ
> どうやって
> eで、2,7,1,8,2,8・・・達を箱に入れることができるのか
無限個をまとめて入れればよい
> 時枝問題とは無関係ですよ
時枝記事の内容に沿う無限数列の構成も可能なんです
自然数全体の集合N = {1, 2, ... , n, ...}だけしか考えないのなら
{無限公理} + {ペアノの公理} : N = {1, 2, ... , n, ...}
R^Nの場合だと無限数列は an = {1, 2, ... , n, ...} の他にもあるので
{anが属する同値類} + {数学的帰納法} : an = {1, 2, ... , n, ... } と考えたい
手法としては{anが属する同値類} + {数学的帰納法}の部分は
完全代表系が1つあってanが属する類の代表元を選べばanと有限個が異なる数列で達成できる
あとは代表元の有限個を変更すればanが構成できる
一般のR^Nの元snでも同様でsnが属する類の代表元rnを選んで
rnの有限個を変更すればsnが構成できる
>>760
> > 「1つずつ」だから当然極限はとらずにですよ?
> > 後続が無限(回)になるような自然数は存在しないのにできるのですか?
> できます
> 1回投げる毎に入れる。それだけですよ
であるから
2, 7, 1, 8, ... 0, 0, ... , 0, 0, ... の0を「1つずつ」変えて
2, 7, 1, 8, 2, 8, ... = eにできるんですよね
当然eの値は全て知っているものとしてですよ
スレ主らしい曲解はいらないです
0, 0, ... , 0, 0, ...は空箱だと思ってくれていいです
844:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/06 21:11:14.04 x3fmkWer.net
>>767
> 1人増w
なんだ
おサルか?w(^^
一匹じゃんかw
「1人」? 勘違いだよ、あなたのw
>>1)彼のサイコロは、電動でクルクル回り続けるみたいだね
>「1試行毎に異なる目を出す」という意味では正しい
>「電動でクルクル回ってるから目が読めない」という意味なら誤りw
おサルは、ぐだぐだ言ってないで
テメエのいう「クルクル回」の数学的定義を書けよ、おいサルよw(^^
(まあ、そんな(定義を書くような)能力ないんだろうな、おサルは)
>確率論で扱うのは「1試行毎に異なる目を出すサイコロ」
>どの試行でも同じ目を出すサイコロなら確率論で扱う対象ではない
両方とも、確率論で扱えるよ
後者は
845:イカサマサイコロでしょ(下記)?(^^; (参考) http://my.cellblog.jp/archives/78 統計でイカサマサイコロを見破るには 2017年7月9日:情報科学 CellBlog (抜粋) 有名な漫画カイジで、班長がイカサマサイコロを使って賭博で勝ち続けるシーンがあります。シゴロサイといって、4と5と6の面しかないため、意図的に4か5か6の目を出すことができます。 カイジがこの不正を見つけます。4と5と6の目しかないので、サイコロを詳しく調べればイカサマの証明は終了です。しかし、「もし重心がずれているだけのイカサマサイコロならどうでしょうか?」どの面も普通のサイコロと変わりないので、見た目では判断不可能です。そういう状況で使うのがP値です。 イカサマサイコロを調べるには、まずサイコロを振って、データを取ります。たとえば6回振って以下のようにデータがでたとしましょう。 差があることの指標「P値」 1000回サイコロを振った結果を見ても、偶然の可能性は否めません。しかし、結果2は結果1よりもサイコロがイカサマであることを強く示しています。そこで、どれくらいの確率でイカサマサイコロなのかを計算するのがP値です。 P値は「差がないことの確率」を意味しています。たとえば、1から5の目が出る確率と6の目がでる確率の差について、P値を計算し、0.02が計算されたとします。これは1から5の目がでる確率と6の目がでる確率に差がない確率は2パーセントということを意味します。よって、まず差があるだろうと判断する訳です。
846:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/06 21:24:23.68 x3fmkWer.net
>>768-770
>「箱の中身が定数」という事実を否定する
あなたのいう「定数」の意味は、高校数学の確率変数と変わらんと思うけどw
まあ、中学生に分かるように説明すれば
1)サイコロの目そのものも、確率変数になりうる
2)下記の「【例5】 さいころを1回投げて,出た目の数の100倍の金額(円)がもらえる場合」の各金額も、確率変数 Xです
3)サイコロは、普通ですよ。高校数学ではね。一回投げれば、止まりますよ(^^
「箱の中身が定数」というおサルの確率は、ヒトの確率論では”確率変数”です
”数Ⅱ・B”を、お勉強ねがいますw(^^
(参考)
URLリンク(www.geisya.or.jp)
数Ⅱ・B
※高校数学Bの「確率分布」について,このサイトには次の教材があります.
↓確率変数とは-現在地
↓確率変数と確率分布
(抜粋)
【例5】 さいころを1回投げて,出た目の数の100倍の金額(円)がもらえる場合,確率分布は次の表のようになる.
847:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/06 21:34:39.46 x3fmkWer.net
>>771
(引用開始)
> どうやって
> eで、2,7,1,8,2,8・・・達を箱に入れることができるのか
無限個をまとめて入れればよい
(引用終り)
1)”無限個をまとめて入れればよい”ですか?
2)それって、eとかπとか名前のある超越数はいいですが、それって非可算無限ある超越数では例外でしょ?
3)eとかπ以外の名も無い超越数は、どうするの? 誤魔化さずに、具体的にきちんと書いて下さいね。逃げずにね(^^;
>時枝記事の内容に沿う無限数列の構成も可能なんです
>自然数全体の集合N = {1, 2, ... , n, ...}だけしか考えないのなら
>{無限公理} + {ペアノの公理} : N = {1, 2, ... , n, ...}
いや、だから、東大 会田茂樹 PDF 「無限回のサイコロ投げ」が可能でしょ
”{無限公理} + {ペアノの公理} : N = {1, 2, ... , n, ...}”によって
そうやって、会田茂樹の無限回の”サイコロ投げ”で終りでしょw(^^
(>>760より再録)
いやー、申し訳ないけど
再録(>>737より)
>>730 東大 会田茂樹 PDFもご参照下さい
「(3) 無限回のサイコロ投げ
何回も独立に
サイコロ投げを続けることを考える. その試行の結果として、1~6 の数字の無限列が現れる.
この無限列一つ一つが根元事象とみなせる. すなわち
Ω は Ω = { a1, a2, ・ ・ ・ , an, ・ ・ ・) | ai = 1, ・ ・ ,6 }」
さらに、追加で会田茂樹 PDF P3 10行目
「なんらかのランダムな現象や試行があり、その結果得られる数値一つ一つが
根元事象を、数値全体が標本空間になっていることを注意しておきます. このランダムな数値が確率変数,
ランダムな数値がどのように分布しているかを表すのが確率分布になります.」
も見ておいてください
(引用終り)
これで尽きているでしょ?
無限回のサイコロ投げ、1回投げる毎に入れる。それだけですよ
URLリンク(www.ms.u-tokyo.ac.jp)
数理統計学 講義資料 会田茂樹 東京大学
(抜粋)
848:132人目の素数さん
19/09/06 22:37:39.36 2FZZpVr1.net
>>759
サル必死
>しかし、そんなサイコロしか現代数学の確率論では扱えなかったのか、はてw?(^^
扱えても勝つ戦略にならないなら無意味
回答者は当てよう当てようとしてるのにそんなアホ戦略論外w
サルは頭が悪いのでいつまで経っても理解できない
849:132人目の素数さん
19/09/06 22:41:46.38 2FZZpVr1.net
>>759
時枝不成立派とか言っても
いまや、サル一匹だけになった(^^
850:132人目の素数さん
19/09/06 22:44:53.79 2FZZpVr1.net
>>761
サルはεN論法も理解できないくせに極限語るなよ
851:132人目の素数さん
19/09/06 22:46:16.85 2FZZpVr1.net
>>762
確率論の問題でないことが未だに理解できないサル
知能が圧倒的に欠落している
852:132人目の素数さん
19/09/06 22:46:53.90 hPDyvlKG.net
>>774
> ”{無限公理} + {ペアノの公理} : N = {1, 2, ... , n, ...}”によって
> そうやって、会田茂樹の無限回の”サイコロ投げ”で終りでしょw(^^
anの値が必ず1ずつ増えていくのならよいですがそうじゃないでしょう
> eとかπ以外の名も無い超越数は、どうするの?
R^Nの元は自由に選べるのですよ
問題になるのは無限個並んだ数のそれぞれが実数であるかどうかだけ
出題者と回答者が平等であれば数当てゲームは成立します
eとかπなら説明が書きやすいというだけです
スレ主と違って実際の数字を知らないから不可能とかいう
しみったれたことは通常考えないですよ
853:132人目の素数さん
19/09/06 22:49:51.81 2FZZpVr1.net
サルはまず自然数と∞を区別するところから始めろ
いくら5ちゃんが便所の落書きとはいえバカ過ぎなんだよおまえのレスは
854:132人目の素数さん
19/09/06 23:07:52.16 2FZZpVr1.net
一つずつ無限個入れることが可能と云うサルへ
一つずつ入れる操作を繰り返した時、何回目で無限個になるのか答えろ
855:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/07 08:06:56.41 8WzaZQff.net
>>779
(引用開始)
> ”{無限公理} + {ペアノの公理} : N = {1, 2, ... , n, ...}”によって
> そうやって、会田茂樹の無限回の”サイコロ投げ”で終りでしょw(^^
anの値が必ず1ずつ増えていくのならよいですがそうじゃないでしょう
(引用終り)
anの値が必ず1ずつ増えていくのですよ!!
というか、そう見なせるということです
下記のコーシー列
「有限数列 (x1, x2, ..., xk) は xk = xk+1 = xk+2 = … と延長することにより、コーシー列と見なせる」
です。もちろん、延長は有限ではいけません
当然、無限に延長するということ。現代数学では、これは認められますw(^^
URLリンク(ja.wikipedia.org)
コーシー列
(抜粋)
コーシー数列
無限数列 (xn) について
(抜粋)
lim_{n,m→ ∞}|x_n-x_m|=0
が成立するとき、数列 (xn) はコーシー的である、コーシー性を持つ、あるいはコーシ-列であるという。
有限数列 (x1, x2, ..., xk) は xk = xk+1 = xk+2 = … と延長することにより、コーシー列と見なせる。
実数におけるコーシー列
しかし、実数の重要な性質の一つとして、実数全体の集合 R におけるどのようなコーシー列も必ず R 内に極限値を持つことが挙げられる。実数からなるどんなコーシー数列も収束列であるという事実は、歴史的な事情で「実数の連続性」と呼ばれる[4]。
(4.^ 後述のように一般的な語法では完備性と呼ばれる概念であり、函数の連続性とは無関係であるので注意)
したがって、実数列あるいは実ユークリッド空間内の点列のみに関して言うならば、それが収束することとコーシー列であることは同値となる。この場合であれば、コーシー列は必ず収束するので、|xn ? xm| を評価してコーシー列か判定すれば、極限値を仮定することなく収束性が判定できる。
コーシーの方法ならば極限値の推定は不要であるという利点がある。
つづく
856:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/07 08:07:40.44 8WzaZQff.net
>>782
つづき
数学史における位置付け
18世紀、オイラーらによって大きな進歩を遂げた解析学は、19世紀にはより厳密性が求められるようになった。そこでボルツァーノやコーシーらによって連続や収束がはっきりと捉えられるようになったものの、未だに実数とは何であるのか不明瞭であった。
19世紀後半には実数を算術的に定義する方法が盛んに研究され、その中で現在コーシー列と呼ばれる概念を導入したのがカントールである。
カントールがこの成果を発表したのは1872年で、1821年に発表されたコーシーの収束判定法を満たす数列を用いて実数を定義しようという、当時一般的だった考え方に基づいている。
このコーシーの収束判定法を満たす数列としてコーシー列が用いられ、実数はコーシー列の極限として定義された。
20世紀には、フレシェが函数空間の研究において距離を用いてコーシー列を改めて定義している。これによって、極限に関わる概念は距離とコーシー列で定義されるようになった。
(�引用終り)
>R^Nの元は自由に選べるのですよ
笑えます
自由に選べるなら
R^Nの元で、{1,2,3,4,5,6}のみからなる元を取り出せば、サイコロの目による数列そのものじゃないですかw(^^
無益な論争になって(平行線)きたので、こうしましょう
時枝の可算無限個の箱を用意する方法と同じ方法で、サイコロの目を箱に入れます
可算無限個の箱を一つずつ用意するのが、普通と思いますよ。そのときは、サイコロを1回ずつ投げます
可算無限個の箱を一気に全部用意するなら、同様に、可算無限個のサイコロを一気に投げますw(^^
QED
857:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/07 08:10:36.17 8WzaZQff.net
>>781
ほいよ >>782-783w(^^
858:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/07 08:36:39.57 8WzaZQff.net
コーシー列のついでに、メモ貼るよ
まあ、εδみたいな狭い視点ではなく、”開集合、有向点族(ネット)、フィルター (filter) ”などを、一気に理解するのが正解だよ
21世紀は、”ネット”の時代かも (おやじギャグ)w(^^
URLリンク(ja.wikipedia.org)
有向点族
(抜粋)
有向点族(ゆうこうてんぞく、directed family of points)とは、点列を一般化した概念で、ムーア (Eliakim Hastings Moore) とスミス (H. L. Smith) により1922年に定義された。有向点族はネット (net)、有向点列、 Moore-Smith 列などとも呼ばれる。
点列との違いは添え字にあり、点列が自然数という可算な全順序集合の元で添え字付けられるのに対し、有向点族はより一般的な順序集合である(可算または非可算な)有向集合の元で添え字付けられている。
有向点族の概念の利点として以下の2つがある:
・点列にある「可算性」、「全順序性」という束縛がなくなる。
点列の場合はこうした束縛ゆえに定理を証明する際に空間に可算性に関する何らかの仮定(第一可算公理など)を課さねばならなくなる事があるのに対し、有向点族ではそのような条件なしに同様の定理が証明できる場合がある。
・複数の収束概念を統一的に扱う事ができる。
例えば点列の収束、実数値関数の収束、リーマン積分におけるリーマン和等は有向点族の収束概念の特殊ケースとみなせる。
特に重要なのは、開集合、閉包、連続性などの位相構造に関する概念を有向点族の収束性で特徴づけられる事である。それに対し点列の場合はその添え字の可算性ゆえ、同様の特徴づけを行うには空間の方にも可算性に関する条件が必要となる(詳細は列型空間を参照)。
なお、添え字集合を有向集合にした事は、位相空間上の各点の近傍系が有向集合である(詳細後述)事と相性がよく、これも点列概念の不十分さを解消する上で一役買っている。
つづく
859:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/07 08:37:11.22 8WzaZQff.net
>>785
つづき
点列の極限で位相構造を特徴づけられない例としては、整列順序集合[0,ω1]に順序から定まる位相を入れた空間がある。
ここで ω1は最小の非可算順序数である。実際この集合においてω1は明らかに[0,ω1)の閉包に属しているにも関わらず、[0,ω1)内のいかなる点列もω1に収束しない。
なぜなら ω1の非可算性と「可算集合の可算和はまた可算集合になる」という事実により、 [0,ω1)内の任意の点列に対し、点列に属する点のいずれよりも大きい順序数α<ω1が存在するので、 ω1の開近傍(α,ω1]には点列の点が存在しえないからである。
点列概念から可算性を取り除くもう一つの方法として、1937年にアンリ・カルタンによって生み出されたフィルターの概念が知られているが、実はフィルターの概念は収束という観点から見た場合には有向点族の概念と実質的に同値である事が知られている。
URLリンク(ja.wikipedia.org)
860:95%E3%82%A3%E3%83%AB%E3%82%BF%E3%83%BC_(%E6%95%B0%E5%AD%A6) フィルター (数学) (抜粋) フィルター (filter) とは半順序集合の特別な部分集合のことである。実際には半順序集合として、特定の集合の冪集合に包含関係で順序を入れた物が考察されることが多い。フィルターが初めて用いられたのは一般位相幾何学 (general topology) の研究であったが、現在では順序理論や束の理論でも用いられている。順序理論的な意味でのフィルターの双対概念はイデアル(英語版)である。 類似の概念として1922年にエリアキム・H・ムーアと H. L. スミスによって導入されたネットの概念がある。 歴史 1936年9月のブルバキ会合ではアンドレ・ヴェイユによる数学原論の「位相」[1]の草稿に関して議論がなされた。その草稿でヴェイユは点列の収束を議論する上で空間に第二可算公理の成立を要求していたが(下の#位相幾何学におけるフィルターも参照)、この制限を除くためにアンリ・カルタンが会合中に見つけた解決の糸口がフィルターである[2]。 フィルターの概念の初出として一般に言及されるのは、ブルバキの他メンバーの勧めを基にカルタンが翌年に提出した2つの論文[3][4]である。 (引用終り) 以上
861:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/07 08:39:32.41 8WzaZQff.net
>>786 補足
”点列の極限で位相構造を特徴づけられない例としては、整列順序集合[0,ω1]に順序から定まる位相を入れた空間がある。
ここで ω1は最小の非可算順序数である。実際この集合においてω1は明らかに[0,ω1)の閉包に属しているにも関わらず、[0,ω1)内のいかなる点列もω1に収束しない。
なぜなら ω1の非可算性と「可算集合の可算和はまた可算集合になる」という事実により、 [0,ω1)内の任意の点列に対し、点列に属する点のいずれよりも大きい順序数α<ω1が存在するので、 ω1の開近傍(α,ω1]には点列の点が存在しえないからである。”
この説明は、分り易いね(^^
862:132人目の素数さん
19/09/07 10:07:14.30 g5ZGoduN.net
>>783
>無益な論争になってきた(平行線)
それは貴様が自分の誤りを認めないから
馬鹿のくせに利口ぶるな
阪大卒を詐称する工業高校卒の詐欺師野郎
ああ、貴様のヘタクソなウソが笑える(嘲)
863:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/07 10:09:12.01 8WzaZQff.net
>>782 補足
<議論を収束させるための補足>
(引用開始)
> ”{無限公理} + {ペアノの公理} : N = {1, 2, ... , n, ...}”によって
「有限数列 (x1, x2, ..., xk) は xk = xk+1 = xk+2 = … と延長することにより、コーシー列と見なせる」
です。もちろん、延長は有限ではいけません
当然、無限に延長するということ。現代数学では、これは認められますw(^^
(引用終り)
xk = xk+1 = xk+2 = … の延長が
全ての自然数 N = {1, 2, ... , n, ...}を尽くす
これが、「無限に延長する」の定義な
>>787 整列順序集合[0,ω1]の例のような、非可算順序数ω1を使ったアナロジーでいえば
[0,ω]で可算順序数ωを考えたものではないよと
[0,ω)つまり、N={0,1,2,・・・}あるいは上記N = {1, 2, ... , n, ...}で延長は十分尽くされて、ω(∞でも意味同じだが)は必要としていないってことだよ
上記は念押しな(^^
864:132人目の素数さん
19/09/07 10:09:23.69 g5ZGoduN.net
>>784
>ほいよ
出た、朝鮮語ホイヨーwww
意味は「オレは無敵の将軍様だ」wwwwwww
865:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/07 10:11:26.48 8WzaZQff.net
>>788
ほいよ >>789なw(^^
866:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/07 10:11:57.21 8WzaZQff.net
>>790
ほいよ >>790なw(^^;
867:132人目の素数さん
19/09/07 10:14:13.19 g5ZGoduN.net
>>785-787
また、馬鹿が自分でも理解できないことコピペしてるなwww
自然数論は自然数全体の集合の存在を前提した理論ではない
自然数論における∀xのxの範囲は自然数全体だが、
これが集合である必要はない
集合論における∀xのxの範囲は集合全体だが
これは集合でなくクラスw
阪大卒を詐称する工業高校卒は述語論理も知らん馬鹿w
868:132人目の素数さん
19/09/07 10:15:38.42 g5ZGoduN.net
>>791
ホイヨー(w)>>793
北朝鮮に帰れ ゴキブリ
869:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/07 10:17:39.60 8WzaZQff.net
>>790
(引用開始)
>ほいよ
出た、朝鮮語ホイヨーwww
意味は「オレは無敵の将軍様だ」wwwwwww
(引用終り)
初耳
出身国の故郷の言葉かい?
いやいや、おサルの言葉かもなw(^^
870:132人目の素数さん
19/09/07 10:19:14.51 rlsdE/6p.net
>>783
>可算無限個の箱を一つずつ用意するのが、普通と思いますよ。
だから一つずつ用意する行為を繰り返したとき何回目で無限個に辿り着くのか答えよと申すに、
屁理屈ばかりでまったく答えようとしない
潔く負けを認めろイカサマ詐欺師
871:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/07 10:19:28.64 8WzaZQff.net
>>793
(引用開始)
自然数論は自然数全体の集合の存在を前提した理論ではない
自然数論における∀xのxの範囲は自然数全体だが、
これが集合である必要はない
集合論における∀xのxの範囲は集合全体だが
これは集合でなくクラスw
(引用終り)
意味不明
自分が自分の言葉に酔っているようだな
おサルの数学、意味不明w(^^;
872:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/07 10:20:41.21 8WzaZQff.net
>>796
ごくろうさん
サル踊り、ごくろうさん
踊って踊って by サル回しのスレ主よりw(^^
873:132人目の素数さん
19/09/07 10:25:33.25 Wc0Vtz6m.net
>>782
> anの値が必ず1ずつ増えていくのですよ!!
> というか、そう見なせるということです
それはサイコロの目を箱に入れたことにはならないのです
箱に実数を入れてそれを数列と見るので自然数から実数の写像で考えないと
> N = {1, 2, ... , n, ...}
全ての自然数に対して{1, 2, ... , 6}の値をそれぞれ1つだけ指定することが
可算無限個の箱全てにサイコロの目を入れるということです
>>783
> 笑えます
> R^Nの元で、{1,2,3,4,5,6}のみからなる元を取り出せば、
> サイコロの目による数列そのものじゃないですかw(^^
勝手に笑っていればいいですよ
誰もそんなことは気にもしていないですから
被害妄想ってやつですか?
哀れなスレヌシズムではそういうのが楽しいのでしょうね
問題点を見落としていることの方が笑えるんではないですかね
> こうしましょう
> 時枝の可算無限個の箱を用意する方法と同じ方法で、
> サイコロの目を箱に入れます
可算無限個の箱にサイコロの出目を入れるとして
A : 「1つずつ」入れる
B : 無限個をまとめて入れる
A or B : 数当て戦略は成り立つ
だから数当て戦略を否定したかったら
A and (not B)を考えるしか方法がないんだけれどね
874:132人目の素数さん
19/09/07 10:26:20.61 g5ZGoduN.net
>>797
意味明確
北朝鮮では述語論理は教えないらしいな
日本ではこんなの常識だがなwwwwwww
875:132人目の素数さん
19/09/07 10:32:29.98 rlsdE/6p.net
>>798
サル答えられず発狂
876:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/07 10:56:18.77 8WzaZQff.net
>>797
自然数論?
前原昭二先生か?(^^
URLリンク(www.jstage.jst.go.jp)
自然数論 の無 矛盾性証明の必要性
前原昭二 筑波大学数学系 科学基礎論研究 Vol.14 1979
(抜粋)
§1 自然数論の無矛盾性
数学的帰納法を含む自然数の理論が矛盾を含まないと
いうことの証明は,ゲンツェンによる次の論文において
はじめて与えられた:
G.Gentzen, Die Widerspruchsfreiheit der reinen
Zahlentheorie. Math. Ann. 112 (1936).
この論文の標題中にはreine Zahlentheorie なる語が見
え,それをわが国では通常”自然数論”とよび,欧米で
も最近はPeano's arithmeticなる用語を当てるようにな
ってきたが,自然数論にしてもPeano's arithmeticにし
も,いずれも集合論的方法を援用するペアノの自然数論
を連想させるので,その意味では適切なる訳語とはいえ
ない。
ゲンツェンによれば,reine Zahlentheorie (純粋
な数論)とは,無理数とか無限級数などのような解析か
らの補助手段を用いない自然数の理論であり,要するに
集合論的方法を用いない自然数の理論のことだからであ
る。しかし,この小論においても,慣行にしたがって,
"自然数論"なる用語によって"純粋な数論"を意味す
ることにする。
ゲーデルの不完全性定理によれば,そのような無矛盾性には,
当然に,数学的帰納法より本質的に高級なより正確
に述べれば,純粋な数論では許されない証明手段が
用いられることになる。前記のゲンツェンの論文におい
ては,その高級な証明手段は,最初のエプシロン数まで
の超限帰納法という形に集約されていた。この点に関し
高名な数学者アンドレ・ヴェイユが,ゲンツェンを評し
て"通常の帰納法の無矛盾性を証明するのに超限帰納法
を使うという変り者"[R.L.グヅドステイン著,赤 摂也
訳 『数学基礎論入門』(培風館),129頁より引用]と言
ったとか言わないとか。しかし,とにかく,ゲンツェン
が何を証明したのかを正確に知らなければ,ヴュイユの
ような意見を表明したくなるのも,けっして不自然なこ
とではない。
では,いったい,ゲンツェンは何を証明したのであろうか?
つづく
877:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/07 10:56:39.97 8WzaZQff.net
>>802
つづき
§5 有限の立場での∀と∃の意味づけ
こんどは,∀XF(X)とか∃xF(X)という形の命題の
真偽について考える。
自由変数は含まないが,∀や∃を含む命題の真偽は,
じつは,一般に,次の3つの場合にわかれる:
1) 真であると決定できる場合
2) 偽であると決定できる場合
3) 真とも偽とも決定できぬ場合
事実,∀や∃を含まぬ命題については,3)の場合はあ
り得なかった。しかし,∀や∃を含む命題を問題にする
以上,つねに3)の場合があり得ることを覚悟せねばな
らぬのである。
通常の立場では,自由変数を含まぬ命題の真偽は,わ
れわれがそれを決定できると否とにかかわらず,真か偽
のいずれかに定まっている,と考える(排中律)。
有限の立場では,われわれが直接に確認し得ないことを,
他の判断の根拠にはしない。
5. 直観主義的自然数論の基礎づけは,上述のような
常識的解釈だけでは困難である。命題の真偽に,より精
密な定義を与えることが必要となる。そして,それを実
行したのが,ゲソツェンによる"自然数論の無矛盾性証
明"である。ゲンツェンは,後に"証明"を改良し,証
明の外見からは"命題の真偽の概念"は見えなくなって
しまったけれど,裏には,同一の考え方が流れているこ
とに間違いはない。
ゲーデルが
Uber eine bisher noch benutzte Erweiterung des
finiten Standpunktes, Dialectica 12 (1958)
において与えた自然数論の無矛盾性証明も,直観主義的
自然数論の命題の真偽に1つの解釈を与えたものなので
ある。
(引用終り)
878:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/07 11:02:17.44 8WzaZQff.net
>>802-803
ゲンツェン (1936).か
おサルは、えらく古い話をしっているなー(^^
赤 摂也先生、培風館ねー
おサルは、三歳児なのに、よく知っているね~w(^^
URLリンク(ja.wikipedia.org)
赤攝也(せき せつや)
(抜粋)
来歴
石川県金沢市に生まれる。筆名・愛知三郎。1949年東京大学理学部数学科卒業。51年同大学院(旧制)修了。1961年東京教育大学理学博士。1962年立教大学助教授、教授、1984年東京教育大学教授、90年定年退官、放送大学教授、客員教授。
数学者吉田洋一は義父、哲学者の吉田夏彦は義兄にあたる。妻は翻訳家の赤冬子(1930-、立教大学英文科卒)。弥永昌吉ゼミ研究生だった関恒義一橋大学名誉教授の妻は妹[2]。
人物
数学基礎論の権威として知られる。
URLリンク(ja.wikipedia.org)
培風館
URLリンク(www.baifukan.co.jp)
株式会社 培風館
879:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/07 11:21:25.16 8WzaZQff.net
>>799
笑えます
自明でしょ(^^
箱1,2,3,・・・・(箱の可算無限列)
↓↑
N 1,2,3,・・・・(自然数)
↓↑
X1,X2,X3,・・・・(確率変数)
↓↑
1,3,2,3,5・・・・ (サイコロの目による無限数列の一例)
ここに、”↓↑”は、上の集合と下の集合が全単射になることを意味する
(なにを、ごちゃごちゃと曲解しているのですかね~w(^^; )
>> N = {1, 2, ... , n, ...}
>全ての自然数に対して{1, 2, ... , 6}の値をそれぞれ1つだけ指定することが
>可算無限個の箱全てにサイコロの目を入れるということです
当然でしょw
上記の通り
かつ、�
880:]来から言っている通り (引用開始) 可算無限個の箱にサイコロの出目を入れるとして A : 「1つずつ」入れる B : 無限個をまとめて入れる A or B : 数当て戦略は成り立つ だから数当て戦略を否定したかったら A and (not B)を考えるしか方法がないんだけれどね (引用終り) 違いますよ 時枝の数当てには、厳密な数学の証明がないと批判されていますよ (>>677-678ご参照) つまり、サイコロの出目を入れると、各箱の確率は1/6になる。例外は無し (>>664ご参照) ところが、時枝は、例外的にある箱が確率99/100になるという その「確率99/100」は、測度論に裏付けられていません!!(「確率99/100」がデタラメだということ) 以上
881:132人目の素数さん
19/09/07 12:44:50.86 I7oh7viS.net
最近このスレで時枝問題知りました。面白いですね。
> 時枝の数当てには、厳密な数学の証明がないと批判されていますよ
そうですか?
> つまり、サイコロの出目を入れると、各箱の確率は1/6になる。例外は無し
そうですね。
> ところが、時枝は、例外的にある箱が確率99/100になるという
厳密にはおかしいですね。
後半の議論は、100個の自然数が与えられたら、所望のものが確率99/100「以上」で選べるというものでしょう。
はじめと後半とで主張が違うから矛盾といいたいのでしょうが、それは浅はか
途中の操作が確率論で扱えないものなだけですね。
つまりはバナッハ・タルスキと同じ状況。
なので、別に数学的におかしなことはないのでした。
球の体積評価するときにバナッハ・タルスキ使って体積がおかしい!なんていわないでしょう。
882:132人目の素数さん
19/09/07 12:49:01.83 rlsdE/6p.net
>>805
>その「確率99/100」は、測度論に裏付けられていません!!(「確率99/100」がデタラメだということ)
という間違いは、時枝解法が P(d1≧d2)≧1/2 と主張しているとの誤解が原因。
実際は P(d1,d2のいずれかをランダムに選んだ方≧他方)≧1/2 と主張しており、これは自然数の基本性質と一様分布の定義から否定し様が無い。
サルは頭が悪いので何度説明されても理解できない。サルに数学は無理。
883:132人目の素数さん
19/09/07 12:50:15.18 rlsdE/6p.net
説明されて理解する普通のバカは救い様が有る
サルは救い様が無い
884:132人目の素数さん
19/09/07 12:57:04.30 rlsdE/6p.net
P(d1≧d2) と P(d1,d2のいずれかをランダムに選んだ方≧他方)
の違いを理解できるのが人間
サルには無理
885:132人目の素数さん
19/09/07 13:09:16.21 rlsdE/6p.net
そういえばサルは「関数論が反例」と言わなくなったね
さすがのサルでもバカ過ぎると気付いたのかな?
しかし未だ人間には程遠いサルだったw
886:132人目の素数さん
19/09/07 17:48:52.95 g5ZGoduN.net
>>802-804
工業高校卒は論理が分からないから
支離滅裂な連想で検索するね
だから馬鹿のままなんだよw
単に自然数論では自然数の全体の集まりなんて扱わないということ
集合論では集合の全体の集まり(集合でない)なんて扱わないのと同じ
887:132人目の素数さん
19/09/07 17:53:33.89 g5ZGoduN.net
>>806
>途中の操作が確率論で扱えない
実は時枝記事の確率計算は、箱の中身を定数として
列を選ぶ確率だけを考えているので、非可測性なんて出てこない
「そこまで制限すれば自明じゃん」という指摘はごもっともだが
その前提で数学的に完全に厳密な証明なので否定しようがない
888:132人目の素数さん
19/09/07 18:02:37.12 g5ZGoduN.net
そもそも工業高校卒の学歴詐称詐欺師の主張は時枝記事とは無関係
1.箱の中身を試行毎に代わる確率変数とし、
当てる箱を固定して当てる中身について
馬鹿の一つ覚えで「0だ!」といいつづけるなら
箱の中身の分布に基づいて計算するしかない
2.箱の中身を試行毎に代わる確率変数とし、
当てる箱を固定して当てる中身について
当てる箱の先の無限個の箱の中身による
尻尾の同値類の代表元と同じだとするなら
非可測性により確率計算は不能
3.時枝記事では
箱の中身を試行毎で一定の定数とし、
100列に並べた上で1列を選び
他の99列の決定番号の最大値Dの箇所の箱
を選んで、その中身について
当てる箱の先の無限個の箱の中身による
尻尾の同値類の代表元と同じだとする
当たるのは選んだ列の決定番号が単独最大値にならない場合
したがって
100列中に単独最大の決定番号が存在しない場合 確率1
100列中に単独最大の決定番号が存在する場合 確率99/100
1および2と、3は