19/08/31 08:11:06.92 5Sd8GiRB.net
>>398
>おサルの確率論には、確率変数が出てこない
ニワトリ君は、
「毎回異なるサイコロの目に対して、
同じ答え(例えば1)をいいつづけて当たる確率」
と
「毎回同じサイコロの目(例えば1)に対して
異なる回答者が異なる答えをいって当たる確率」
の違いが分からない馬鹿w
前者はサイコロの目を確率変数と考えるが
後者ではそうでhない
その証拠に例えば後者の問題で
「回答者が誰であっても同じ答えをいいつづける」
場合、その答えが例えば1なら確率1で当たるが
6だったら確率0 つまり外れつづける
こんなことが瞬時にわからないヤツが
阪大なんか受かるわけないじゃん
おまえ、ウソつくならもうちょっとマシなウソつけよ
工業高校卒のDQN!
447:132人目の素数さん
19/08/31 08:13:12.80 643MmAXP.net
無限列の場合、同値類の代表元からカンニングすれば必勝!←人間の知恵
無限列でも有限列と同じ戦略でなければならない!←猿知恵
サル畜生は調教不可能
448:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 08:13:13.72 PbGhNKv4.net
>>362 補足
ご高説を宣う(>>336)ID:Zkv8CBzY君へ
全然理解してないのは、おサルだってこと、
>>406で分って貰えたかな?(^^
私の意見は、(高校数学B)と(大学数学)の通りなんですけど
おサルの確率計算が、全く屁理屈のカタマリということ、ご理解頂けたでしょうか?w
449:132人目の素数さん
19/08/31 08:19:08.38 643MmAXP.net
>>416
>私の意見は、(高校数学B)と(大学数学)の通りなんですけど
大学数学の選択公理と同値類の通りじゃないじゃんw
おまえそれら理解してないじゃんw
なに分かった気になってるのか? このサル畜生は
450:132人目の素数さん
19/08/31 08:21:18.08 643MmAXP.net
サル畜生は大学数学が分かってないのに分かってるふりをする
本当に質の悪いサルですねえ
451:132人目の素数さん
19/08/31 08:40:48.33 643MmAXP.net
まあ大学数学が分からないサル畜生のために選択公理も同値類も不要なジャンケンの例を示したのだが
それでも理解できないようですねえ
サル畜生の調教は不可能
---------
A君とB君がジャンケンで勝敗を決める。
A君が勝つ確率P(A)=1/2は言えない。
なぜなら二人が出す手は不明だから。
しかしである。
二人のいずれかをランダム(一様分布)に選び、Cという別名を付けたとき
P(C)=1/2が言える。
それが一様分布の定義だからである。
452:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 09:00:19.94 PbGhNKv4.net
>>407
(引用開始)
いったい何度説明すれば分かるのか?
X1,X2,・・・,Xn,・・・を確率変数に取る戦略(当てずっぽう戦略)では勝てる戦略にならない。
よって時枝の問い「勝てる戦略は存在するか?」に対して無意味。
一方、列indexを確率変数に取る戦略(時枝戦略)では勝率99/100以上で勝てる。証明は時枝記事前半。
よって時枝の問い「勝てる戦略は存在するか?」に対して「時枝戦略が存在する」と回答すればよい。
(引用終り)
食言していますねw(^^
あなたの主張は、「時枝では確率変数が固定され、それは定数になるのだ」と、そうと言ってきたのです
ようやく、「確率変数は、固定などされず、定数にはならないもの(確率変数は”もともと”そういう定義)」(>>404-406)だと理解し、前言を撤回しましたねw
(参考)
URLリンク(dictionary.goo.ne.jp)
しょく‐げん【食言】の意味 出典:デジタル大辞泉(小学館) goo辞書
(抜粋)
[名](スル)《一度口から出した言葉を、また口に入れてしまう意》前に言ったことと違うことを言ったりしたりすること。
453:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 09:02:49.43 PbGhNKv4.net
>>420 追加
(>>407)
>X1,X2,・・・,Xn,・・・を確率変数に取る戦略(当てずっぽう戦略)では勝てる戦略にならない。
ここ、理解が間違っていますよ!!(^^
”X1,X2,・・・,Xn,・・・を確率変数に取る戦略(当てずっぽう戦略)”ではありません
戦略ではありません!
現代数学の確率論の通り!!
即ち、まず、時枝記事の箱の数は、現代数学の確率論では
1番目の箱、2番目の箱、・・・ を、X1,X2,・・・とします
時枝記事では、s = (s1,s2,s3 ,・・・)ですが、
使う文字がXとsとで違うなどは、低レベル中学生の話です
で、例えばサイコロ2つの目の和を入れるとき、数学ではこれを確率変数と呼びます
確率現象に限らない数列もある。それが一般のs = (s1,s2,s3 ,・・・)ですが、
確率変数の場合を排除するものではありません
(時枝記事を素直に読めば分ります)
(参考)
スレ47 スレリンク(math板:19番)-
時枝問題(数学セミナー201511月号の記事)
(抜粋)
実数列の集合 R^Nを考える.
s = (s1,s2,s3 ,・・・)
454:132人目の素数さん
19/08/31 09:04:03.02 5Sd8GiRB.net
>>400
>i.i.d. 独立同分布
ニワトリ君、●●の一つ覚え
ほんと工業高校卒ってアタマ悪いよなw
455:132人目の素数さん
19/08/31 09:10:29.75 5Sd8GiRB.net
>>406
>ある1つのD番目の箱 XDの確率が、99/100だという
456: ニワトリ君、時枝記事の日本語が読めず、思いっきり間違うwwwwwww 正しくは 「100列のうちから、s_D=r_Dとなる列を選ぶ確率が 99/100」 ついでにいうとDも列によって異なるよ あたりの99列ではDは100列中の単独最大決定番号だが はずれの1列ではDは100列中二番めに大きい決定番号 そういう細かい考察全然してないでしょ ニワトリ君は だから工業高校卒なんだよな そんな知的向上心のないDQNが阪大なんか入れるわけないじゃんwww
457:132人目の素数さん
19/08/31 09:12:11.76 5Sd8GiRB.net
>>416
>私の意見は、(高校数学B)と(大学数学)の通りなんですけど
そもそも>>309が高校数学の通りだが
理解できなかったか?工業高校卒のニワトリ頭w
458:132人目の素数さん
19/08/31 09:14:29.55 g0CuHqO3.net
>>421
> 理解が間違っていますよ!!
そうはいっても前の書き込みでのスレ主の確率計算が間違っているよ
>>363
> 4)n→∞個の箱が連続して当たる確率は
> lim n→∞ (1/6)^n =0 ( (1/6)^n→0ってこと)
「当てずっぽう戦略」なら0だけれども
Anの箱の中身を知っていれば0にはならないでしょ
459:132人目の素数さん
19/08/31 09:16:30.90 5Sd8GiRB.net
>>420-421
ID:643MmAXPの
「X1,X2,・・・,Xn,・・・を
確率変数に取る戦略(当てずっぽう戦略)
では勝てる戦略にならない。」
はオカシイ
「時枝記事では無限列の各項は確率変数ではない」
が正しい
要するに、試行を複数回繰り返す場合
無限列の各項は全く同じまま出題する
ニワトリ頭はここを読み落とした
日本語が読めない馬鹿wwwwwww
460:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 09:21:47.57 PbGhNKv4.net
>>413
(引用開始)
問題
A君とB君がババ抜きをします
B君の背後に姿見がありました
A君に必勝戦略はあるでしょうか?
答え
姿見を使ってカンニングすれば必勝です。←人間の知恵
サル畜生の答え
確率論の教科書通りの確率を考える必要がある。必勝戦略など無い。←猿知恵
猿知恵しか持たないサル畜生は見事に落第しましたとさ
(引用終り)
ええ、その通りです
私は、ヒトですが(^^
あなたは、ガリバーのヤフーですか?
猿の惑星?(下記)(^^
数学外のカンニング手段があることを、否定しません
しかし、現代数学内のカンニング手段は、まだ、見つかっていませんね
どうぞ、見つけたら、論文をお書き下さいw
ある1つの箱がある。その箱の周りに無関係の箱を可算無限個並べる
無限個の箱を100列に並べて開けると、確率99/100で、無関係だったある1つの箱の中の数が、箱を開けずに的中できると時枝先生w
よく読むと、時枝先生は、記事の後半で、やっぱり当てられないよと書いていましたね(下記引用ご参照)w(^^
(参考)
URLリンク(ja.wikipedia.org)
ガリヴァー旅行記
(抜粋)
馬の姿をした種族フウイヌム
彼らを悩ませているヤフーと呼ばれる邪悪で汚らしい毛深い生物と対比される。
ヤフーは、ブロブディンナグ国でのサイズの拡大と同様に、人類を否定的に歪曲した野蛮な猿のような種族であり、ヤフーの中には退化した人間性がある
URLリンク(ja.wikipedia.org)
猿の惑星シリーズ
スレ47 スレリンク(math板:22番)-
(抜粋)
数学セミナー201511月号P37 時枝記事より
「もうちょっと面白いのは,独立性に関する反省だと思う.
確率の中心的対象は,独立な確率変数の無限族
X1,X2,X3,…である.
n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか--他の箱から情報は一切もらえないのだから.
(引用終り)
461:132人目の素数さん
19/08/31 10:11:21.49 5Sd8GiRB.net
ニワトリには数学は理解できないので
これからはアイドルの話題中心でw
URLリンク(www.youtube.com)
BABYMETALとなんとか坂の区別がつかない爺ワロスwwwwwww
462:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 10:33:00.08 PbGhNKv4.net
>>426
(>>420-421)
ID:643MmAXPの
「X1,X2,・・・,Xn,・・・を
確率変数に取る戦略(当てずっぽう戦略)
では勝てる戦略にならない。」
はオカシイ
「時枝記事では無限列の各項は確率変数ではない」
が正しい
(引用終り)
意見が割れたかw
しかし、ID:643MmAXPの方(例えば>>407)がまだ筋は通っている
「時枝記事では無限列の各項は確率変数ではない」は無茶苦茶
(>>406より)
(高校数学B)
・箱が1つだったら、確率変数X (時枝は使えない)
・箱がn個だったら、確率変数X1,X2,・・・,Xn (時枝は使えない)
(大学数学)
・箱がn→∞個だったら、確率変数X1,X2,・・・,Xn,・・・ (時枝?w プロ数学者)
(引用終り)
「箱がn個だったら、確率変数X1,X2,・・・,Xn 」
これ、別に戦略を選んでいるわけではない
数学の確率論の通りです。”戦略”ではない
(方程式の未知数xと同じ。例えれば、算数の問題を、文字式で表現しただけのこと)
で、同様に
「箱がn→∞個だったら、確率変数X1,X2,・・・,Xn,・・・」
と、箱の数を、文字で表現しただけのこと。時枝記事の前半にもある通り
で、文字で表現した”X1,X2,・・・,Xn,・・・”で
サイコロ1つだったら、サイコロ1つの確率分布
サイコロn個の和だったら、サイコロn個の和の確率分布になります
ここは、戦略ではないので、選択の余地なしです
その上で、ID:643MmAXPさんは、別の手段があるというのだが、
時枝先生は、独立だったら、「当てられっこないではないか--他の箱から情報は一切もらえないのだから」(下記)という
(参考)
スレ47 スレリンク(math板:22番)-
(抜粋)
数学セミナー201511月号P37 時枝記事より
「もうちょっと面白いのは,独立性に関する反省だと思う.
確率の中心的対象は,独立な確率変数の無限族
X1,X2,X3,…である.
n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか--他の箱から情報は一切もらえないのだから.
(引用終り)
463:132人目の素数さん
19/08/31 10:53:51.27 5Sd8GiRB.net
>>429
「箱の中身は確率変数」には何の筋もない ただの誤解
ID:643MmAXPは、ワカランチンのニワトリのしつこさに
ついつい引き込まれたんだろう 同情の余地は大いにある
>「箱がn個だったら、確率変数X1,X2,・・・,Xn 」
>数学の確率論の通りです。
時枝記事を読み損ねたニワトリwww
し・か・し、時枝記事の説明から明らかなように
箱の中身は毎回の試行で同じ(つまり入れ替えない)であって
確率変数でもなんでもなくただの定数
>選択の余地なし
そうとも、確率変数だと考える余地は全く無い
ニワトリが勝手に読み間違っただけ ただの馬鹿www
ついでにいえば、非可測とかいうのは見当違い
(R^N上の測度を考える必要が全くないから)
>時枝先生は、独立だったら、
>「当てられっこないではないか
> --他の箱から情報は一切もらえないのだから」
>という
独立だったらね
し・か・し、定数同士に独立もクソもないw
99/100というのは
「選んだ箱の中身が代表元と一致する確率」ではなく
「中身が代表元と一致する箱を選ぶ確率」である
(箱の中身は定数だから一致するかしないか2つに1つw)
464:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 16:19:58.75 PbGhNKv4.net
>>430
>し・か・し、定数同士に独立もクソもないw
ある意味、その見方もある
(>>309より 引用開始)
箱の中のサイコロの目は4だとする
(なぜ4か?
それは私がBABYMETALの「4の歌」が好きだから
よんよん!!!)
(引用終り)
”1つ箱を開けた「4」だった”
時枝のままでは、箱の数の入れ方は「まったく自由」(下記)なので、このままでは数学にはなじまない
そこで、「まったく自由」に制限を入れて、「ある規則に従って、数を入れる」と制限することにする
そうすると、もし、コイン10枚の裏表で{0,1}を入れたならば、ある1つの箱を残して、他を全部開けグラフ化などの統計処理をすると、「10枚のコイントスだ」と分る(下記)
サイコロ1つの目でも同じ。1~6に制限されていて各数字の出現率1/6から、サイコロの目と推測できる
残り1つが推定できる
これが、数学の確率・統計論の”1つ箱を開けた「4」だった”の意味
多くの開けた箱から、残りの箱の確率計算ができるのですよ、確率・統計論で!(^^;
(参考)
スレ47 スレリンク(math板:18番)-
時枝問題(数学セミナー201511月号の記事)
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.
今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう.
どの箱を閉じたまま残すかはあなたが決めうる.
勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け.
勝つ戦略はあるでしょうか?」
URLリンク(bellcurve.jp)
Step1. 基礎編13.
465: いろいろな確率分布1 13-1. 二項分布 統計WEB (抜粋) コインを10回投げて表が出る回数の確率 二項分布のグラフを描くと次のようになります。表の出る回数が5回となる時の確率が最も高く http://bellcurve.jp/statistics/wp-body/wp-content/uploads/2016/08/2b530e80c7d0de90885e285c5d798063-5.png
466:132人目の素数さん
19/08/31 16:32:07.88 5Sd8GiRB.net
>>431
>>定数同士に独立もクソもないw
>ある意味、その見方もある
どの意味、その見方しかないw
>時枝のままでは、箱の数の入れ方は「まったく自由」なので、
>このままでは数学にはなじまない
「なじまない」のではなく「必要ない」
>多くの開けた箱から、残りの箱の確率計算ができるのですよ、
>確率・統計論で!
馬鹿丸出しw
467:132人目の素数さん
19/08/31 16:37:18.09 5Sd8GiRB.net
ニワトリは馬鹿だから時枝問題は確率の問題だと思いこんでる
しかし実は集合論の問題である
その証拠に箱の中身の分布など一切考えてない
箱の中身と代表元の一致だけ考えてる
468:132人目の素数さん
19/08/31 17:32:44.46 643MmAXP.net
>>420
>前言を撤回しましたねw
してないがw
箱の中身を確率変数としても勝てる戦略にはならない
列indexを確率変数とすれば勝てる戦略になる
「勝てる戦略は存在するか?」と問われて勝てない戦略を選ぶバカはいない、サル畜生以外には
ずっと一貫してそう言ってるのに、このアホザルは何を勘違いして「撤回」と言ってるのか?
サルはもういいから失せろよ 物覚えが悪過ぎて調教不可能だわ
469:132人目の素数さん
19/08/31 17:42:43.86 643MmAXP.net
>>421
現代確率論は何を確率変数にするか強制しちゃうんだw
それに従わなかったらどうなるの? 懲役?w
妄想ザルは妄想が激し過ぎる
数学のまえにその精神病治療しろ
話にならない
470:132人目の素数さん
19/08/31 18:19:26.30 5Sd8GiRB.net
>>643
>箱の中身を確率変数としても…
時枝記事では箱の中身を確率変数としていない 定数だとしている
箱の中身を確率変数とする問題は、時枝記事とは別に存在する
そしてその問題の解答は「非可測性により確率が求まらない」
>…勝てる戦略にはならない
「勝ち負けが不明」というのが正しい
471:132人目の素数さん
19/08/31 18:22:31.62 5Sd8GiRB.net
>>435
ニワトリ君は「”独立”だから当たるわけない」と思い込んでるだけ
工業高校卒は思考できない ただ直感するだけw
472:132人目の素数さん
19/08/31 18:31:02.29 5Sd8GiRB.net
ニワトリ君の言い訳の変化www
第1期
決定番号∞だから当たらない
→∞は自然数でない、と指摘され 弁解できず撤回(ニワトリ一敗)
第2期
自然数Dに対して、D以上の自然数は無限にあるから当たらない
→>>241でサイコロを振って最大値が出る確率は1/6と認める(ニワトリ二敗)
第3期
箱の中身はそれぞれ独立だから当たらない
→箱の中身はそもそも定数なので独立とか無意味(ニワトリ三敗)
いっとくが非可測云々も箱の中身が定数なので無意味
ニワトリ君はすでに死んでいるw
473:132人目の素数さん
19/08/31 18:34:36.00 5Sd8GiRB.net
知り合いの阪大工学部卒に質問
Q. ∞は自然数か?
A. そもそも∞って数じゃないだろ
速攻で否定されましたw
Q.ネットで阪大工学部卒と称するヤツが∞は自然数だと言い張ってるんだけど
A.学歴詐称のホラ吹き相手にすんなよ アホが伝染するぞ
付き合うなと言われましたw
474:132人目の素数さん
19/08/31 18:39:23.58 5Sd8GiRB.net
>>435
ニワトリ君は統合失調型人格障害かもしれませんな
・関係念慮を持ち偶然の出来事に特別な意味づけをする。
・文化規範から離れた奇妙なあるいは魔術的な信念があり、
テレパシーや予知などで、簡単な儀式を伴うこともある。
・無いものがあるように感じるというように、知覚の変容がある場合がある。
・過剰に具体的であったり抽象的であったり、
普通とは違った形で言葉を用いたりするなどの奇異な話し方をする。
475:132人目の素数さん
19/08/31
476:19:48:22.98 ID:g0CuHqO3.net
477:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 19:59:32.06 PbGhNKv4.net
再度言おう
スレ75 スレリンク(math板:411番)-
時枝記事の手法など
プロ数学者は、だれも相手にしない
不成立に見えて、自明に不成立だから w(^^
スレ75 スレリンク(math板:377番)-
i.i.d. 独立同分布
(説明)
1.箱が1個。確率変数X1
サイコロ,コインなら、確率空間は、下記の定義の通り。
サイコロΩ={1,2,3,4,5,6}で、1~6の数が箱に入り、各確率1/6
コイン1枚なら、Ω={0,1}で、0か1の数が箱に入り、各確率1/2
2.箱がn個。確率変数X1,X2,・・・,Xn
i.i.d. 独立同分布とすると、各箱は上記1の通り
(2’箱がn+1個。確率変数X1,X2,・・・,Xn+1
i.i.d. 独立同分布とすると、各箱は上記1の通り )
3.箱が可算無限個。確率変数X1,X2,・・・ →X∞
i.i.d. 独立同分布とすると、各箱は上記1の通り
4.これは、数学的帰納法の証明にもなっている。時枝は、これで尽きている。上記1~3のどの箱の確率変数も例外なし!
QED(^^
(参考)
URLリンク(mathtrain.jp)
確率空間の定義と具体例(サイコロ,コイン) | 高校数学の美しい物語 2015/11/06
URLリンク(ja.wikipedia.org)
数学的帰納法
478:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 20:17:00.54 PbGhNKv4.net
>>441
>代表元だって同じでしょ
「代表元による代表番号の確率計算」は、数学的な厳密な扱いができてないのですよ!!(^^
そのあなたの考えは(>>352より)
下記Denis "I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}"
と同じでしょ?(^^(>>287ご参照)
で、厳密な数学の証明がないというのが、Pruss氏、確率論の専門家さんと、私ね(^^
(そもそも、Denis氏発言に対する批判” but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.”もあるよ)
(>>241)
そこを(数学的に厳密でないと)批判しているのが、Alexander Pruss氏だよ
URLリンク(mathoverflow.net)
Probabilities in a riddle involving axiom of choice Dec 9 '13
(抜粋)
asked Dec 9 '13 at 16:16 Denis
I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.
Alexander Pruss answered
The probabilistic reasoning depends on a conglomerability assumption, namely that given a fixed sequence u ̄ , the probability of guessing correctly is (n?1)/n, then for a randomly selected sequence, the probability of guessing correctly is (n?1)/n.
But we have no reason to think the event of guessing correctly is measurable with respect to the probability measure induced by the random choice of sequence and index i, and we have no reason to think that the conglomerability assumption is appropriate.
A quick way to see that the conglomerability assumption is going to be dubious is to consider the analogy of the Brown-Freiling argument against the Continuum Hypothesis (see here for a discussion).
URLリンク(www.mdpi.com)
479:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 20:18:18.10 PbGhNKv4.net
>>443 追加
スレ73 スレリンク(math板:486番)-
(>>486より再録)
過去、確率論の専門家さん来訪して、Pruss氏の指摘(2013)とほぼ同じことを指摘している(下記)
(参考確率論の専門家さん ID:f9oaWn8A)
スレ20 スレリンク(math板:519-番)
519 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A
>>518
X=(X_1,X_2,…)をR値の独立な確率変数とする.
時枝さんのやっていることは
無限列x=(x_1,x_2,…)から定められた方法によって一つの実数f(x)を求める.
無限列x=(x_1,x_2,…)から定められた方法によって一つの自然数g(x)を求める.
P(f(X)=X_{g(X)})=99/100
ということだが,それの証明ってあるかな?
100個中99個だから99/100としか言ってるようにしか見えないけど.
522 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A
面倒だから二列で考えると
Y=(X_1,X_3,X_5,…)とZ=(X_2,X_4,X_6,…)独立同分布
実数列x=(x_1,x_2,…)から最大番号を与える関数をh(x)とすると
P(h(Y)>h(Z))=1/2であれば嬉しい.
hが可測関数ならばこの主張は正しいが,hが可測かどうか分からないのでこの部分が非自明
528 132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A
おれが問題視してるのはの可測性
正確にかくために確率空間(Ω,F,P)を設定しよう
Y,Zはそれぞれ(Ω,F)から(R^N,B(R^N))の可測関数である.
もしhが(R^N,B(R^N))から(N,2^N)への可測関数ならば
h(Y),h(Z)はそれぞれ可測関数となって{ω|h(Y(ω))>h(Z(ω)}∈FとなりP({ω|h(Y(ω))>h(Z(ω)})=1/2となるけど
hが(R^N,B(R^N))から(N,2^N)への可測関数とは正直思えない
532 返信132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A
>>530
>2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ
残念だけどこれが非自明.
hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない
そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう
(引用終り)
480:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 20:29:48.59 PbGhNKv4.net
>>439
>付き合うなと言われましたw
おサルは面白いね
じゃ、なんで、ここに粘着しているんだ?
「アホが伝染」した?w(^^
いやいや、元からおサルは三歳児でしょw(^^
481:132人目の素数さん
19/08/31 20:32:08.69 643MmAXP.net
>>426
>「時枝記事では無限列の各項は確率変数ではない」
>が正しい
それは否定していない
>ID:643MmAXPの
>「X1,X2,・・・,Xn,・・・を
> 確率変数に取る戦略(当てずっぽう戦略)
> では勝てる戦略にならない。」
>はオカシイ
何が?
482:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 20:33:56.02 PbGhNKv4.net
>>438
>第1期
そういや、おサルのピエロは
当初は、「時枝が否定されれば、選択公理が否定されるみたい」な、アホ発言していたね
撤回したのか?w(^^
もっと、「選択公理の踊り」を踊ってくれよw(^^
483:132人目の素数さん
19/08/31 20:37:46.35 643MmAXP.net
>>429
>「時枝記事では無限列の各項は確率変数ではない」は無茶苦茶
と言いがかり付けてる方が無茶苦茶w
時枝記事は時枝解法しか述べていない
時枝解法では無限列の各項は確率変数ではない、列indexが確率変数だ
484:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 20:41:47.14 PbGhNKv4.net
>>446
(引用開始)
>>426
>「時枝記事では無限列の各項は確率変数ではない」
>が正しい
それは否定していない
(引用終り)
ありゃりゃのりゃ!w(^^;
現代数学の確率変数を否定するんだw
「時枝記事では無限列の各項は確率変数ではない」!!
ありゃりゃのりゃ!
そんなこと、軽々しく言い切って、委員会?
こんなことをいうやつが、「数学を全然理解して」いる?(>>336)
全面的に、現代数学の確率変数を否定するんだw
これ、どう思っているんだろうね、ID:Zkv8CBzYさん(>>336)
w(^^;
485:132人目の素数さん
19/08/31 20:42:31.96 643MmAXP.net
>>447
時枝解法の仮定は選択公理のみ
よって「時枝解法が否定されるなら選択公理が否定される」は正しい
分からないのは大学数学を理解していないアホザルのみ
486:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 20:46:09.76 PbGhNKv4.net
>>449 補足
現代数学の確率変数を、時枝に適用しているのが、おれスレ主w(^^
現代数学の確率変数を否定し、時枝の各項は確率変数ではないというのが、おサルたちw
やれやれ
ID:Zkv8CBzYさん(>>336)も、まさか、現代数学の確率変数否定派なのかね?
487:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 20:47:52.86 PbGhNKv4.net
>>450
(引用開始)
時枝解法の仮定は選択公理のみ
よって「時枝解法が否定されるなら選択公理が否定される」は正しい
分からないのは大学数学を理解していないアホザルのみ
(引用終り)
よかった
やっぱり、
おサルはおサルだった(^^;
488:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 20:53:17.60 PbGhNKv4.net
>>452 補足
普通の数学者は、選択公理下での非可測性を問題視するが
おサルは、逆に、選択公理を万能視して、非可測性をスルーなんだ
三歳児の理屈だねw(^^
(>>443より)
下記Denis "I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}"
で、厳密な数学の証明がないというのが、Pruss氏、確率論の専門家さんと、私ね(^^
(そもそも、Denis氏発言に対する批判” but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.”もあるよ)
(参考)
URLリンク(mathoverflow.net)
Probabilities in a riddle involving axiom of choice Dec 9 '13
(抜粋)
asked Dec 9 '13 at 16:16 Denis
I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.
Alexander Pruss answered
The probabilistic reasoning depends on a conglomerability assumption, namely that given a fixed sequence u ̄ , the probability of guessing correctly is (n?1)/n, then for a randomly selected sequence, the probability of guessing correctly is (n?1)/n.
But we have no reason to think the event of guessing correctly is measurable with respect to the probability measure induced by the random choice of sequence and index i, and we have no reason to think that the conglomerability assumption is appropriate.
A quick way to see that the conglomerability assumption is going to be dubious is to consider the analogy of the Brown-Freiling argument against the Continuum Hypothesis (see here for a discussion).
URLリンク(www.mdpi.com)
489:132人目の素数さん
19/08/31 20:55:02.74 643MmAXP.net
>>449
>現代数学の確率変数を否定するんだw
落ち着けサルw
「現代数学の確率変数」って何だ?w
490:132人目の素数さん
19/08/31 21:00:01.35 643MmAXP.net
>>452
>おサルはおサルだった(^^;
まったくその通り
商集合は選択公理が無いと作れないとか言っちゃうアホザルはアホザルだった(^^;
選択公理も同値類もまったく分かってない(^^;
491:132人目の素数さん
19/08/31 21:12:12.53 643MmAXP.net
>>453
このサル学習しないのうw
>おサルは、逆に、選択公理を万能視して、非可測性をスルーなんだ
誰も万能だなんて言ってないw 代表系の存在が保証されると言ってるだけw
実際、R^N/~の元はどれも{}でないのだから否定し様が無いw
サル畜生に選択公理が理解できないだけの話w
確率論の専門家は、時枝解法の確率がP(A)だと誤解しているので、非可測性をスルーできないと言った
しかし実際はP(C)なのでまったく的外れ
サル畜生が訳も分からず尻馬に乗っかってるだけの話w
492:132人目の素数さん
19/08/31 21:15:08.98 g0CuHqO3.net
>>443
箱を開けてサイコロの目であることは推測できるのでしょう?
>>431
> 各数字の出現率1/6から、サイコロの目と推測できる
最初から有限個は実数を(ランダムに)選んで箱に入れたとする
残りはサイコロを無限回振って無限数列を作る
ある方法で選んだ箱が100個あってその内の1つを選ぶ
つまり{1, 2, ... , 100}から1つ数字を選ぶ
残りの99個の箱の全ての中身が{1, 2, 3, 4, 5, 6}のいずれかであったら
選んだ箱の中身も{1, 2, 3, 4, 5, 6}のいずれかと推測できる
実際その確率は99/100
493:132人目の素数さん
19/08/31 21:15:53.70 643MmAXP.net
>>451
>現代数学の確率変数を、時枝に適用しているのが、おれスレ主w(^^
サルの妄言は理解不能w
「現代数学の確率変数」って何だ?w
494:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 21:18:43.73 PbGhNKv4.net
>>449 補足
(>>407より)
X1,X2,・・・,Xn,・・・を確率変数に取る戦略(当てずっぽう戦略)では勝てる戦略にならない。
よって時枝の問い「勝てる戦略は存在するか?」に対して無意味。
一方、列indexを確率変数に取る戦略(時枝戦略)では勝率99/100以上で勝てる。証明は時枝記事前半。
よって時枝の問い「勝てる戦略は存在するか?」に対して「時枝戦略が存在する」と回答すればよい。
(引用終り)
これを要約すれば、下記2つの戦略がある
1)勝てない戦略:X1,X2,・・・,Xn,・・・を確率変数に取る戦略(当てずっぽう戦略)
2)勝てる戦略:列indexを確率変数に取る戦略(時枝戦略)(勝率99/100以上で勝てる)
なので、私は(>>420より)
あなたの主張は、「時枝では確率変数が固定され、それは定数になるのだ」と、そうと言ってきたのです
ようやく、「確率変数は、固定などされず、定数にはならないもの(確率変数は”もともと”そういう定義)」(>>404-406)だと理解し、前言を撤回しましたねw
(引用終り)
と書いた
ところが、
(>>446より)
(引用開始)
>>426
>「時枝記事では無限列の各項は確率変数ではない」
>が正しい
それは否定していない
(引用終り)
そうなると、もともと
「1)勝てない戦略:X1,X2,・・・,Xn,・・・を確率変数に取る戦略(当てずっぽう戦略)」
なる戦略は、存在しないという主張になるね
つまり、この方が、当方としては話しが簡単で、
”おサルは、「現代数学の確率変数を否定するんだw」”という批判が成立つ!w
その批判に、おサルは耐えられないでしょ!w(^^
495:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 21:19:48.98 PbGhNKv4.net
>>458
中学校の確率から勉強しましょう、おサルさんw(^^
496:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 21:21:44.74 PbGhNKv4.net
>>460
ヒント
中学校、高校数学Bでは、確率変数の個数は有限です( 除く連続 )w(^^
497:132人目の素数さん
19/08/31 21:27:11.08 643MmAXP.net
>>427
>しかし、現代数学内のカンニング手段は、まだ、見つかっていませんね
時枝解法w
すなわち同値類の代表元をカンニングする解法
同値類が分かってないサルに理解できないだけの話w
498:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 21:33:05.62 PbGhNKv4.net
>>457
つー、>>443-444 (^^;
ええ、私も勝てる例を考えられます
数を入れる人は、πが好きで、すべての箱にπを入れるよう指示しそうしているところを見てしまった
なので、私は、ある箱を除いて、他を全て確認した上で、「未開封の箱はπだ」と言って勝ちました(^^
しかし、勝てる特異な例を作ったところで、数学の理論になってい�
499:ワせんね(あなたに同じ) (参考) スレ47 https://rio2016.5ch.net/test/read.cgi/math/1512046472/18- 時枝問題(数学セミナー201511月号の記事) 1.時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない.そして箱をみな閉じる.」
500:132人目の素数さん
19/08/31 21:34:06.83 643MmAXP.net
>>427
>よく読むと、時枝先生は、記事の後半で、やっぱり当てられないよと書いていましたね(下記引用ご参照)w(^^
時枝解法の証明は記事前半で完全
大学数学を知らないサルには証明が読めないだけの話
501:132人目の素数さん
19/08/31 21:41:59.92 643MmAXP.net
>>429
>ここは、戦略ではないので、選択の余地なしです
すげー
時枝の問い全否定かよw
「勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」
502:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 21:45:16.39 PbGhNKv4.net
>>462
(引用開始)
>しかし、現代数学内のカンニング手段は、まだ、見つかっていませんね
時枝解法w
すなわち同値類の代表元をカンニングする解法
同値類が分かってないサルに理解できないだけの話w
(引用終り)
つー、>>443-444 (^^;
あなたの主張は下記
同値類→代表→代表と問題の数列を比較した決定番号→複数列の決定番号の大小から、カンニング正解率は100列で確率99/100だ!
その最後の確率99/100
下記Denis "I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}"
と同じでしょ?(^^(>>287ご参照)
で、厳密な数学の証明がないというのが、Pruss氏、確率論の専門家さんと、私ね(^^
(そもそも、Denis氏発言に対する批判” but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.”もあるよ)
(詳しくは、>>443-444 )
(>>241)
そこを(数学的に厳密でないと)批判しているのが、Alexander Pruss氏だよ
URLリンク(mathoverflow.net)
Probabilities in a riddle involving axiom of choice Dec 9 '13
(抜粋)
asked Dec 9 '13 at 16:16 Denis
I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.
503:132人目の素数さん
19/08/31 21:48:12.47 643MmAXP.net
時枝先生「勝てる戦略はあるでしょうか?」
数学科生「時枝戦略なら勝てます」
サル畜生「問いとして成り立っていない」
504:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 21:49:37.24 PbGhNKv4.net
>>465
>時枝の問い全否定かよw
>「勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」
ええ、”どんな実数を入れるかはまったく自由”なので
私は、サイコロ2つの目の和を、可算無限個ある.箱を入れました
これで、箱の中の数は、現代数学でいう確率変数になり、現代数学の確率変数の理論で扱えますw(^^;
確率変数を否定しないと、時枝さんは不成立?w
じゃ、不成立ですね!w(^^;
スレ47 スレリンク(math板:18番)
(参考)
スレ47 スレリンク(math板:18番)-
時枝問題(数学セミナー201511月号の記事)
1.時枝問題(数学セミナー201511月号の記事)の最初の設定はこうだった。
「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる.
どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい.
もちろんでたらめだって構わない.そして箱をみな閉じる.」
505:132人目の素数さん
19/08/31 21:50:20.67 H5d2+P4t.net
スレ主みぐるし
506:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 21:50:37.44 PbGhNKv4.net
>>468 タイポ訂正
私は、サイコロ2つの目の和を、可算無限個ある.箱を入れました
↓
私は、サイコロ2つの目の和を、可算無限個ある.箱に入れました
な(^^;
分ると思うがw
507:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 21:51:15.61 PbGhNKv4.net
>>469
どうも。スレ主です。
応援ありがとう(^^
508:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 21:54:39.07 PbGhNKv4.net
>>471 補足
いや、楽しいねw
再度言おう
スレ75 スレリンク(math板:411番)-
時枝記事の手法など
プロ数学者は、だれも相手にしない
不成立に見えて、自明に不成立だから w(^^
最後は、おれの勝ちだから
「時枝が成立する」という人が、多ければ多いほど面白い!w(^^
スレ75 スレリンク(math板:377番)-
i.i.d. 独立同分布
(説明)
1.箱が1個。確率変数X1
サイコロ,コインなら、確率空間は、下記の定義の通り。
サイコロΩ={1,2,3,4,5,6}で、1~6の数が箱に入り、各確率1/6
コイン1枚なら、Ω={0,1}で、0か1の数が箱に入り、各確率1/2
2.箱がn個。確率変数X1,X2,・・・,Xn
i.i.d. 独立同分布とすると、各箱は上記1の通り
(2’箱がn+1個。確率変数X1,X2,・・・,Xn+1
i.i.d. 独立同分布とすると、各箱は上記1の通り )
3.箱が可算無限個。確率変数X1,X2,・・・ →X∞
i.i.d. 独立同分布とすると、各箱は上記1の通り
4.これは、数学的帰納法の証明にもなっている。時枝は、これで尽きている。上記1~3のどの箱の確率変数も例外なし!
QED(^^
(参考)
URLリンク(mathtrain.jp)
確率空間の定義と具体例(サイコロ,コイン) | 高校数学の美しい物語 2015/11/06
URLリンク(ja.wikipedia.org)
数学的帰納法
509:132人目の素数さん
19/08/31 22:00:45.43 643MmAXP.net
>>466
>で、厳密な数学の証明がないというのが、Pruss氏、確率論の専門家さんと、私ね(^^
P(A)=1/2 の証明なんて不要
なぜなら時枝解法は P(C)=1/2 としか言ってないから
そしてそれは一様分布の定義から否定し様が無い
アホザルは人の話を聞かないからいつまでも同じ間違いを繰り返すw
510:132人目の素数さん
19/08/31 22:15:16.69 g0CuHqO3.net
>>466
>>443
> 「代表元による代表番号の確率計算」は、数学的な厳密な扱いができてないのですよ
そんな確率計算はしていないんですよ
>>393
>>387
> > 試行の結果によってその値がことなる変数のことを確率変数
>
> 100列に分けた場合数当てをする箱の候補は100個
> その100個の箱の候補で数当てが失敗する箱は2個以上にはならない
> これは任意の出題された無限数列に対して成り立つ
> 100列で確率99/100だ!
6列で確率5/6ならサイコロと同じで
サイコロを振って選ぶ列を決めればよい
サイコロの各目(1から6)は根元事象
6列から選ぶ列の番号(1から6)も根元事象
100列から選ぶ列の番号(1から100)も根元事象です
スレ主の主張はサイコロも「数学的に厳密でない」と同じだけれども
一方自分で>>468
> 私は、サイコロ2つの目の和を、可算無限個ある.箱を入れました
> これで、箱の中の数は、現代数学でいう確率変数になり、
> 現代数学の確率変数の理論で扱えますw(^^;
と書いているじゃない
511:132人目の素数さん
19/08/31 22:26:48.52 643MmAXP.net
>>430
>ID:643MmAXPは、ワカランチンのニワトリのしつこさに
>ついつい引き込まれたんだろう 同情の余地は大いにある
何を言ってるんだかw
定数を確率変数としてはいけないなんてことは無い。
コイントスで回答者が回答するとき裏か表かは確定している。つまり定数である。
しかし回答者には分からないので確率変数としてもよい。
箱の中身を時枝戦略では確率変数としていないが、別の戦略で確率変数とすることは可能。
但し勝てる戦略にはならない(勝率を計算できない)ので無意味なだけだが。
512:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 22:41:03.60 PbGhNKv4.net
>>472
>最後は、おれの勝ちだから
>「時枝が成立する」という人が、多ければ多いほど面白い!w(^^
最近は、哀れな素人さんの姿が見えないが
513:哀れな素人さんが、このスレに来たころは こんなものじゃなかった 「時枝が成立する」という人がわんさか居てね おサルのピエロは、哀れな素人さんと相前後して登場したと思う 最初からいるのが、もう一匹のおサルさんだと思う まあ、大学教程の確率論・確率過程論を学べば、可算無限個の確率変数を扱う そうすれば、時枝の数列を、可算無限個の確率変数として扱えるから 時枝不成立は、直ちに分かる そうして、自得して去って行ったヒトが多数いた 大学教程の確率論・確率過程論が分からないおサルには、時枝不成立の理解は厳しいかもね 時枝の箱には、確率変数を入れられないとか、アホでしょ サイコロ2つの目の和を入れれば、それ確率変数ですよ、箱が有限であれ無限であれね それだけのことよ そんなことを否定できると思っているのは、アホでしょ
514:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 22:47:45.80 PbGhNKv4.net
>>474
>6列から選ぶ列の番号(1から6)も根元事象
>100列から選ぶ列の番号(1から100)も根元事象です
それで終わるなら、全然問題ないよ
但し、
同値類→代表→代表と問題の数列を比較した決定番号→複数列の決定番号の大小から、カンニング正解率は100列で確率99/100だ!
となると、風がふけばなんとやらで
いつの間にか、「カンニング正解率は100列で確率99/100だ!」となっているけど、ちょっとおかしい
「複数列の決定番号の大小」比較の確率計算のところの可測性が問題視されていますw(^^
(詳しくは、>>443-444 )
(>>241)
そこを(数学的に厳密でないと)批判しているのが、Alexander Pruss氏だよ
URLリンク(mathoverflow.net)
Probabilities in a riddle involving axiom of choice Dec 9 '13
(抜粋)
asked Dec 9 '13 at 16:16 Denis
I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.
515:132人目の素数さん
19/08/31 23:06:07.89 g0CuHqO3.net
>>477
> それで終わるなら、全然問題ないよ
なら問題ないじゃない
> 「複数列の決定番号の大小」比較の確率計算のところ
確率計算なんかしなくていいんだって
>>393
> 数当てが失敗する箱が存在する場合
> 代表元と一致する場合を1で表し一致しない場合を0で表すことにすると
> *をつけた箱のどれかを選ぶことになる
>
> ... , 0, 0*, 0, ... , 0, 0, 0, 1 , 1, 1, 1, ...
> ... , 0, 1 , 1, ... , 1, 1, 1, 1*, 1, 1, 1, ...
> ... , 1, 1 , 1, ... , 1, 1, 1, 1*, 1, 1, 1, ...
> ...
> ... , 1, 1 , 1, ... , 1, 1, 1, 1*, 1, 1, 1, ...
これは確率計算なんかしていない
任意の出題された無限数列に対して成り立つ
516:132人目の素数さん
19/08/31 23:12:25.55 643MmAXP.net
>>459
>なので、私は(>>420より)
>あなたの主張は、「時枝では確率変数が固定され、それは定数になるのだ」と、そうと言ってきたのです
確率変数が固定される??? それは定数になる??? 意味不明過ぎて草しか生えないw
>ようやく、「確率変数は、固定などされず、定数にはならないもの(確率変数は”もともと”そういう定義)」(>>404-406)だと理解し、前言を撤回しましたねw
何も撤回してないがw
>(引用終り)
>と書いた
>
>ところが、
>(>>446より)
>(引用開始)
>>>426
>>「時枝記事では無限列の各項は確率変数ではない」
>>が正しい
>それは否定していない
>(引用終り)
>
>そうなると、もともと
>「1)勝てない戦略:X1,X2,・・・,Xn,・・・を確率変数に取る戦略(当てずっぽう戦略)」
>なる戦略は、存在しないという主張になるね
なんで? おまえの言ってること意味不明過ぎw
>
>つまり、この方が、当方としては話しが簡単で、
>”おサルは、「現代数学の確率変数を否定するんだw」”という批判が成立つ!w
だから「現代数学の確率変数」って何だよw 意味不明過ぎw
>その批判に、おサルは耐えられないでしょ!w(^^
意味不明過ぎて耐えられないw
おい、サル畜生、おまえ意味不明過ぎなんだよw
人間様に分かるように人間の言葉で言えw サル語は分からんw
517:132人目の素数さん
19/08/31 23:21:13.86 643MmAXP.net
>>479
ああ、なるほどw
おまえ人違いしてるんだな?w
だから撤回がどうのこうのと言ってるんだな?w
IDも確認できないほど発狂すんなよw
で「現代数学の確率変数」って何だよw
518:132人目の素数さん
19/08/31 23:34:16.55 643MmAXP.net
>>474
>> 「代表元による代表番号の確率計算」は、数学的な厳密な扱いができてないのですよ
>そんな確率計算はしていないんですよ
その通り。
時枝解法は P(C)=1/2 としか言ってない。これは一様分布の定義通りであり否定し様が無い。
時枝解法は P(A)=1/2 なんて言ってないので、それが非自明という指摘はまったく的外れ。
物覚えの悪いサルの調教は本当に疲れる
519:132人目の素数さん
19/08/31 23:47:48.30 643MmAXP.net
サルよ
時枝問題のルールを思い出せ
当てる箱はどれでもいい
時枝解法は当てる列をランダムに選んでいる
だから勝率99/100以上で当たる
ハズレは100列中1列以下だから
これが
第一列の箱が当たる確率は?
という問題だったら話はまったく変わる
確率論の専門家の言う通り 非可測なので確率計算できない が答えになる
この違いが分からないと人間になれないぞ?w
520:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/31 23:47:57.16 PbGhNKv4.net
>>478
>これは確率計算なんかしていない
>任意の出題された無限数列に対して成り立つ
新説ですね
時枝記事にも書いていない
論文にして投稿してください
こんなスレに書いてはもったいないw(^^;
521:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/01 00:02:28.34 dvD9YE7H.net
>>467
(引用開始)
時枝先生「勝てる戦略はあるでしょうか?」
数学科生「時枝戦略なら勝てます」
サル畜生「問いとして成り立っていない」
(引用終り)
それ、面白すぎ(^^
時枝先生「勝てる戦略はあるでしょうか?」
サルの数学科生「時枝戦略なら勝てます」
ヒトの数学科生「時枝先生、ご冗談ですねw」
522:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/01 00:03:10.71 dvD9YE7H.net
>>475
(引用開始)
箱の中身を時枝戦略では確率変数としていないが、別の戦略で確率変数とすることは可能。
但し勝てる戦略にはならない(勝率を計算できない)ので無意味なだけだが。
(引用終り)
100列に対応する自然数d1,d2,・・・,d100
これが、ランダムに区間[0,1]から選んだ一様な数の数当ての確率と同じなるということの証明がないですよと
ヒトはいう
「ランダムに区間[0,1]から選んだ一様な数の数当ての確率」
”高校数学の美しい物語”では、それは確率0です
”(勝率を計算できない)”のではなく、測度論的に確率0です
(参考)
URLリンク(mathtrain.jp)
高校数学の美しい物語
最終更新:2015/11/06
確率空間の定義と具体例(サイコロ,コイン)
(抜粋)
標本空間 Ω
Ω の各要素は根元事象と呼ばれます。 ω と書くことが多いです。
例3
[0,1] 上の一様分布(ランダムに 0 から 1 の間の実数を返すモデル)
Ω={ 0 以上 1 以下の実数全体 }
523:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/01 00:07:42.64 dvD9YE7H.net
>>485
>[0,1] 上の一様分布(ランダムに 0 から 1 の間の実数を返すモデル)
これは、下記 Sergiu HART氏のPDFにも出てきますね(^^;
スレ72 スレリンク(math板:313番)
<時枝について>
スレ71 スレリンク(math板:25番) より
Sergiu HART The Hebrew University of Jerusalem
URLリンク(www.ma.huji.ac.il)
(A similar result, but now without using the Axiom of Choice.2 Consider the following two-person game game2:)
P2
Remark. When the number of boxes is finite Player 1 can guarantee a win
with probability 1 in game1, and with probability 9/10 in game2, by choosing
the xi independently and uniformly on [0, 1] and {0, 1, ・・・, 9}, respectively.
”independently and uniformly”が、独立同分布(IID)を含意
(引用終り)
上記HART氏のPDFより
・有限個(finite)の確率変数xi (i=1,2,・・・n)で、独立同分布(IID) 区間[0, 1]の一様分布を考えると、
任意の1点の的中率は、0!!! (P(xi=r)=0 ここにrは実数で、r∈[0, 1])
・確率過程論では、可算無限個の確率変数の族を考えることができる(下記重川)
xi (i=1,2,・・・n・・・∞)
有限個と同様に、上記 P(xi=r)=0 r∈[0, 1] が成立する!!!
(どの一つも、 P(xi=r)=99/100とはならない!!! ∵IIDだから”同分布”ゆえ)
・これは、確率過程論の正統な結論である(重川読め)
スレ71 スレリンク(math板:24番) より
重川一郎 京都大学大学院理学研究科数学教室
URLリンク(www.math.kyoto-u.ac.jp)
2013年度前期 確率論基礎 講義ノート
P47
「定義1.1. 時間t ∈ T をパラメーターとして持つ確率変数の族(Xt)を確率過程という.」
(参考)
URLリンク(ja.wikipedia.org)
独立同分布(IID)
以上
524:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/01 00:37:36.02 dvD9YE7H.net
>>477 補足
同値類→代表→代表と問題の数列を比較した決定番号→複数列の決定番号の大小から、カンニング正解率は100列で確率99/100だ!
となると、風がふけばなんとやらで
いつの間にか、「カンニング正解率は100列で確率99/100だ!」となっているけど、ちょっとおかしい
「複数列の決定番号の大小」比較の確率計算のところの可測性が問題視されていますw(^^
「測度論的確率論」(高校数学の美しい物語)としての、厳密な扱いが出来ていないよと、批判されています
(詳しくは、>>443-444 )
(>>241)
そこを(数学的に厳密でないと)批判しているのが、Alexander Pruss氏だよ
URLリンク(mathoverflow.net)
Probabilities in a riddle involving axiom of choice Dec 9 '13
(抜粋)
asked Dec 9 '13 at 16:16 Denis
I think it is ok, because the only probability measure we need is uniform probability on {0,1,…,N-1}, but other people argue it's not ok, because we would need to define a measure on sequences, and moreover axiom of choice messes everything up.
(参考)
URLリンク(mathtrain.jp)
高校数学の美しい物語
最終更新:2015/11/06
確率空間の定義と具体例(サイコロ,コイン)
(抜粋)
確率を厳密に扱うためには「測度論的確率論」を学ぶ必要があります。この記事では測度論的確率論の超入門として,確率を考える舞台となる「確率空間」の定義,意味,具体例について解説します。
測度論的確率論では,確率空間(三つ組(Ω,F,P))を舞台に,確率変数や期待値などいろいろな概念を考えていくことになります。
525:132人目の素数さん
19/09/01 01:50:16.94 CU1S7ZwH.net
>>487
>「複数列の決定番号の大小」比較の確率計算のところの可測性が問題視されていますw(^^
P(d1>d2)が計算不能でも
P(d1,d2のいずれかをランダムに選択した方>他方)=1/2 が言える。それがランダムの定義だから。
サル畜生が理解できていないだけ。
526:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/01 06:54:14.42 dvD9YE7H.net
>>479
>だから「現代数学の確率変数」って何だよw 意味不明過ぎw
>>99&>>119な(^^
なお、無理して理解しなくていい
多分、無理か
平たく言えば、確率空間が定義されれば、その後「確率」計算を行うために、確率変数を定義し、確率分布を定義していく
だから、普通に確率として扱える対象には、確率変数が定義できて、確率計算ができる
例えば、下記実例ご参照
(参考)
スレ61 スレリンク(math板:131番) )
過去の確率変数論争(”確率変数は箱に入れられない”)に対し、下記の説明いいね!(^^
URLリンク(watanabe-www.math.dis.titech.ac.jp)
確率論入門 渡辺澄夫 東工大 2018
(抜粋)
P8 確率変数
可測関数 X: Ω → Ω’
を(Ω’に値をとる)確率変数という
・ 関数のことを確率変数と呼ぶ。
関数を出力と同一視(混同)する (X=X(w))。
関数がランダムなわけではない。
URLリンク(ja.wikipedia.org)
確率変数
(抜粋)
定義
確率変数 X:Ω → E は、標本空間(起こりうることがらの集まり)Ω の元に数 E を対応させる可測関数である(Ω, E はそれぞれ可測空間)(#測度論的定義も参照)。E は通常 R または N(や Z)である。そうでない場合は確率要素として考察する(概念の拡張参照)。
実例
例えば、任意に抽出した人の身長を確率変数とする場合を考える。数学的には、確率変数は 対象となる人→その身長 という関数を意味する。確率変数は確率分布に対応し、妥当にあり得る範囲の確率(身長180cm以上190cm以下である確率や 150cm未満または200cm超である確率)を計算できるようになる。
もう一つの確率変数の例は、抽出した人には何人の子供がいるかというものである。これは非負の整数値を取る離散型確率変数である。
527:132人目の素数さん
19/09/01 07:08:47.26 IVtPZNby.net
>>485
> 100列に対応する自然数d1,d2,・・・,d100
時枝記事はΩ = {1, 2, ... , 100}でいいのでΩ = {d1, d2, ... , d100}ではない
各列で数当ての箱の候補は1つ存在するがその位置は
選ばなかった99列の箱を全て開けて決定する
どの列を選んでも選ばなかった99列の箱を全て開けることから
数当てに失敗する箱は100個の候補の内の2個以上になることはない
528:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/01 07:41:55.16 dvD9YE7H.net
>>488
ピエロちゃんの話は素朴すぎる(^^
(引用開始)
>「複数列の決定番号の大小」比較の確率計算のところの可測性が問題視されていますw(^^
P(d1>d2)が計算不能でも
P(d1,d2のいずれかをランダムに選択した方>他方)=1/2 が言える。それがランダムの定義だから。
サル畜生が理解できていないだけ。
(引用終り)
1)ヒルベルト空間を知っているだろ? 無限次元ベクトル空間に内積を導入したもの(下記)
2)平たく言えば、内積が絶対収束する完備距離空間に制限して扱い易くした、無限次元ベクトル空間と言える
3)では、「内積の絶対収束」という制限を外すとどうなるか?
例えば、要素1からなる無限次元ベクトル
ベクトルv=(1,1,1,・・・・)
この内積は、|v|=1+1+1+・・・ →∞
となり無限大に発散してしまう
4)このような、素朴な無限次元ベクトル空間で、2つのベクトルv1とv2との大きさを比較した
ベクトルの大きさは、内積で定義する。一般に、内積は無限大に発散し、大小比較ができない!
5)ピエロちゃんの素朴なお話の反例が構成されました! QED
(参考)
URLリンク(ja.wikipedia.org)
ヒルベルト空間
(抜粋)
ユークリッド空間の概念を一般化したものである。
ヒルベルト空間は、内積の構造を備えた抽象ベクトル空間(内積空間)になっており、そこでは角度や長さを測るということが可能である。
ヒルベルト空間の各元は、平面上の点がそのデカ
529:ルト座標(直交座標)によって特定できるのと同様に、座標軸の集合(正規直交基底)に関する座標によって一意的に特定することができる。このことは、座標軸の集合が可算無限であるときには、ヒルベルト空間を自乗総和可能な無限列の集合と看做すことも有用であることを意味する。 つづく
530:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/01 07:42:31.33 dvD9YE7H.net
>>491
つづき
動機付けとなる例
ノルムの和(これは実数を項とする通常の級数)が
Σ k=0~∞ |xk| < ∞
なる条件を満たすとき、絶対収束するという[1]。
スカラー項級数の場合と全く同じく、絶対収束するベクトル項級数は
|L -Σk=0~N xk|→ 0 as N→ ∞
なる意味で、このユークリッド空間の適当な極限ベクトル L に収束する。
このような性質(絶対収束級数は通常の意味でも収束する)は、ユークリッド空間の完備性 (completeness) として表される。
定義
H がヒルベルト空間であるとは、H は実または複素内積空間であって、さらに内積によって誘導される距離関数に関して完備距離空間をなすことを言う[2]。
量子力学
ディラック[41]とフォンノイマン[42]によって発展した量子力学の数学的に厳密な定式化は、量子力学系の取りうる状態(より正確には純粋状態)が、状態空間と呼ばれる可分な複素ヒルベルト空間に属する単位ベクトル(状態ベクトルという)によって(位相因子と呼ばれるノルム 1 の複素数の違いを除いて)表現される。
量子状態の時間発展はシュレーディンガー方程式によって記述され、そこに現れるハミルトニアン(全エネルギーに対応する作用素)は時間発展を生み出す。
二つの状態ベクトルの間の内積は確率振幅として知られる複素数になる。量子力学系の理想的な測定の間で、系が与えられた初期状態から特定の固有状態に崩壊する確率は、初期状態から終期状態の間の確率振幅の絶対値の平方によって与えられる。
測定の結果として可能なのは、作用素の固有値であり(これは自己随伴作用素のとり方を説明する)、全ての固有値は実数でなければならない。与えられた状態の可観測量の確率分布は対応する作用素のスペクトル分解を計算すれば求められる。
(引用終り)
以上
531:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/01 07:48:04.31 dvD9YE7H.net
>>491 タイポ訂正
この内積は、|v|=1+1+1+・・・ →∞
となり無限大に発散してしまう
↓
この内積は、|v|^2=1+1+1+・・・ →∞
となり無限大に発散してしまう
だな(^^;
分かると思うが
532:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/01 07:56:54.06 dvD9YE7H.net
>>491 補足
> 4)このような、素朴な無限次元ベクトル空間で、2つのベクトルv1とv2との大きさを比較した
> ベクトルの大きさは、内積で定義する。一般に、内積は無限大に発散し、大小比較ができない!
ここ
(>>444より 確率論の専門家さん ID:f9oaWn8A)
スレ20 スレリンク(math板:532-番)
532 返信132人目の素数さん 投稿日2016/07/03(日)ID:f9oaWn8A
> 2個の自然数から1個を選ぶとき、それが唯一の最大元でない確率は1/2以上だ
残念だけどこれが非自明.
hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない
そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう
(引用終り)
この、”そもそも分布を持たない可能性すらある”は、
単にビタリの意味の非可測だけではなく
”無限大に発散”する非可測の可能性をも、含意していると思うよ(^^
533:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/01 08:10:07.41 dvD9YE7H.net
>>490
(引用開始)
時枝記事はΩ = {1, 2, ... , 100}でいいのでΩ = {d1, d2, ... , d100}ではない
534:どの列を選んでも選ばなかった99列の箱を全て開けることから 数当てに失敗する箱は100個の候補の内の2個以上になることはない (引用終り) 「数当てに失敗する箱は100個の候補の内の2個以上になることはない」 に至るまでに、 大きなギャップがあるよね つまり、時枝は、 下記 「どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない」 だった だから、1つの箱で、”たらめだって構わない”が、ランダムを含意するならば 実数R[-∞、+∞]から、ランダムに選んだ数を当てると解せられる Rは非可算で、R中の1点は測度論では0だから、的中確率0 まず、これを現代数学の確率論の結論として受入れるべきでしょ? そうしないと、時枝記事の面白さは、分かりませんよ!(^^ (>>350より) スレ47 https://rio2016.5ch.net/test/read.cgi/math/1512046472/ 時枝問題(数学セミナー201511月号の記事) 「箱がたくさん,可算無限個ある.箱それぞれに,私が実数を入れる. どんな実数を入れるかはまったく自由,例えばn番目の箱にe^πを入れてもよいし,すべての箱にπを入れてもよい. もちろんでたらめだって構わない.そして箱をみな閉じる. 今度はあなたの番である.片端から箱を開けてゆき中の実数を覗いてよいが,一つの箱は開けずに閉じたまま残さねばならぬとしよう. どの箱を閉じたまま残すかはあなたが決めうる. 勝負のルールはこうだ. もし閉じた箱の中の実数をピタリと言い当てたら,あなたの勝ち. さもなくば負け. 勝つ戦略はあるでしょうか?」 つづく
535:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/01 08:11:01.56 dvD9YE7H.net
>>495
つづき
そして、時枝さんの”時枝記事はΩ = {1, 2, ... , 100}でいい”というところが、プロ数学者から批判されている
厳密な、数学の証明がないよと
>>487に書いた通り
それは、時枝さんも記事の後半で”反省”しています(^^;
(参考)
スレ47 スレリンク(math板:22番)-
(抜粋)
数学セミナー201511月号P37 時枝記事より
「もうちょっと面白いのは,独立性に関する反省だと思う.
確率の中心的対象は,独立な確率変数の無限族
X1,X2,X3,…である.
n番目の箱にXnのランダムな値を入れられて,ある箱の中身を当てようとしたって,
その箱のX と他のX1,X2,X3,・・・がまるまる無限族として独立なら,
当てられっこないではないか--他の箱から情報は一切もらえないのだから.
(引用終り)
以上
536:132人目の素数さん
19/09/01 08:26:27.98 uj+Nfmst.net
>>453
>普通の数学者は、選択公理下での非可測性を問題視するが
非可測集合の存在は不都合ではあるが
測度自体を否定するものではない
それが普通の数学者の認識
>逆に、選択公理を万能視して、非可測性をスルーなんだ
時枝記事で選択公理を前提しているから否定しないだけ
時枝記事で100列は確率変数でなく定数としているから
非可測性は出てこない それだけ
537:132人目の素数さん
19/09/01 08:33:46.56 uj+Nfmst.net
>>456
>(選択公理により)代表系の存在が保証されると言ってるだけ
逆に選択公理を認めないなら、代表が選べないから、時枝記事は成立しない
それだけ
>確率論の専門家は、時枝解法の確率がP(A)だと誤解しているので、
>非可測性をスルーできないと言った
もし、毎回の試行で箱の中身が変わるのであれば
箱の中身は確率変数になるから、非可測性により
確率は求まらない
しかし、そもそも時枝記事はそんな前提はない
毎回の試行で箱の中身が変わるのであれば、
当然箱の中身の分布について記載するが
そんな記載はどこにもない
つまり箱の中身は単なる初期設定の定数にすぎない
箱の中身にどんなものをいれるか自由だが、
一旦入れたら二度と入れ替えない そういうこと
538:132人目の素数さん
19/09/01 08:37:59.10 uj+Nfmst.net
>>459
>「現代数学の確率変数を否定するんだ」
>その批判に、耐えられないでしょ
いや、全然平気だけど、何か?
だって実際、現代数学でも時枝問題の数列は
確率変数じゃなく定数だし
現代数学では選ぶ列の添数が確率変数ですから
(完)
539:132人目の素数さん
19/09/01 08:42:17.03 uj+Nfmst.net
>>463
>すべての箱にπを入れるよう指示しそうしているところを見てしまった
それ戦略じゃないですね
上記の情報なしにして
もし開けた箱の中身が全部πだったら
それだけで「開けた箱の中身は全部πだ!」
と決めつけますか?
それが勝てる戦略だと証明できますか?
勝てる確率は1だと証明できますか?
540:132人目の素数さん
19/09/01 08:51:58.32 uj+Nfmst.net
>>466
>厳密な数学の証明がないというのが、Pruss氏、確率論の専門家さんと、私
「箱の中身を確率変数とするのが厳密だ」という数学の証明がないね
「確率論の専門家」と呼ばれる人は、
「”箱の中身を確率変数とする”なら
決定番号dがD以上の数列全体の集合が
非可測集合となるから確率が求められないね」
と云ったんじゃないのかい?
上記についてはその通りだけど
「時枝問題では”箱の中身を確率変数とする”から」
と云ってるのなら、そこは明らかな誤解だね
Pruss氏もRiddleの答えを、数列を確率変数とする場合に
拡大することはできない、という主旨で述べたのなら分かるが
非可測性だけでは、Riddleを否定できないし実際否定してないね
だから数列を確率変数とせず定数とするなら、
Riddleも時枝記事も現代数学として否定できない
これが答え
541:132人目の素数さん
19/09/01 08:57:06.02 uj+Nfmst.net
>>468
>ええ、”どんな実数を入れるかはまったく自由”なので
>私は、サイコロ2つの目の和を、可算無限個ある.箱を入れました
そうしたところで
>これで、箱の中の数は、現代数学でいう確率変数になり、
>現代数学の確率変数の理論で扱えます
と思うのが誤り
一度箱の中身に数を入れたら入れ替えしない
これで、箱の中身は現代数学でも定数
現代数学の確率変数の理論の出番はない
(時枝記事では、どの列を選ぶかが確率変数だが
あまりにも初等的なことなのでわざわざ言及するまでもない)
確率変数じゃなく定数なら、時枝さんは成立?
じゃ、成立ですね!
542:132人目の素数さん
19/09/01 09:02:38.87 uj+Nfmst.net
>>473
>P(A)=1/2 の証明なんて不要
>なぜなら時枝解法は
>P(C)=1/2 としか言ってないから
その通りだね
2列を確率変数とした前提での確率1/2なんて主張してない
2列を定数とした前提での確率1/2を主張しているだけ
Prussの主張は「2列を確率変数とするなら」正しいが
「2列を定数とする限り」無意味
実際、PrussはRiddleについては否定してない
否定しようがないからね
543:132人目の素数さん
19/09/01 09:07:58.99 CU1S7ZwH.net
>>489
>平たく言えば、確率空間が定義されれば、その後「確率」計算を行うために、確率変数を定義し、確率分布を定義していく
>だから、普通に確率として扱える対象には、確率変数が定義できて、確率計算ができる
それがおまえの云うところの「現代数学の確率変数」なら
時枝解法では Ω={1,...,100}, P(∀i∈Ω)=1/100 なのだが、何も問題無いやんw
おまえはいったい何に対して言いがかりつけてるんだ?
544:132人目の素数さん
19/09/01 09:08:50.71 uj+Nfmst.net
>>475
>定数を確率変数としてはいけないなんてことは無い。
どういう問題を設定してもよい、という意味なら正しい
しかし
「時枝問題で、箱の中身を定数としても確率変数としてもよい」
という意味なら誤りだね
箱の中身が定数(つまり毎回の試行で箱の中身を一切入れ替えない)とするのと
箱の中身が確率変数(毎回の試行で箱の中身を入れ替える)とするのでは
問題が変わる
時枝記事では前者の問題について回答を与えている
後者についても同じ回答になるというならそれは誤り
なぜなら後者の場合非可測性により答えが出せないから
>コイントスで回答者が回答するとき
>裏か表かは確定している。つまり定数である。
定数の考え方が違うね
誰が回答する場合にも、箱の中身が同じであることが、定数の条件
>しかし回答者には分からないので確率変数としてもよい。
分からないから確率変数、というならそれは誤り
誰が回答する場合にも、箱の中身が同じであるなら
回答者が箱の中身を知らなくても定数
545:132人目の素数さん
19/09/01 09:12:13.47 uj+Nfmst.net
>>476
>大学教程の確率論・確率過程論を学べば、可算無限個の確率変数を扱う
上記から
>そうすれば、時枝の数列を、可算無限個の確率変数として扱えるから
は云えない
時枝が無限列の各項を可算無限個の「定数」として設定した瞬間
いくら確率論・確率過程論を持ち出しても、
定数を確率変数に変えることはできない
546:132人目の素数さん
19/09/01 09:16:42.88 uj+Nfmst.net
>>477
>>6列から選ぶ列の番号(1から6)も根元事象
>>100列から選ぶ列の番号(1から100)も根元事象です
>それで終わるなら、全然問題ないよ
では全然問題ない
それで終わりだから
>「複数列の決定番号の大小」比較の確率計算のところの
>可測性が問題視されています
数列が確率変数なら(つまり毎回の試行で箱の中身を入れ替えるなら)
非可測性により確率は求まらない
しかし、数列は実際には定数なので(つまり毎回の試行で箱の中身は
入れ替えないので)非可測性など出てこず確率が求まる
Pruss氏がRiddleを否定できなかったのは、
数列が確率変数ではなく定数だったから
数列が定数のまま、列を選ぶところだけ
確率を導入した場合も否定しようがない
547:現代数学の系譜 雑談 古典ガロア理論も読む
19/09/01 09:17:41.97 dvD9YE7H.net
ピエロちゃん、朝早くご苦労
>>497
>時枝記事で選択公理を前提しているから否定しないだけ
>時枝記事で100列は確率変数でなく定数としているから
>非可測性は出てこない それだけ
「時枝記事で100列は確率変数でなく定数としているから」
ギャップありまくり(^^
>>498
>逆に選択公理を認めないなら、代表が選べないから、時枝記事は成立しない
問題の100列についてだけ、100個の代表を選ぶことにしたどう?
>つまり箱の中身は単なる初期設定の定数にすぎない
>箱の中身にどんなものをいれるか自由だが、
>一旦入れたら二度と入れ替えない そういうこと
妄想でしょ?
サイコロ1つで4を入れた。これ決まった数だが、確率変数です。確率1/6
サイコロ2つの和でを入れた。これ決まった数だが、確率変数です。
大小2つで、(1,3)、(3,1)、(2,2)の3通りで、確率1/12
[0,1] 上の一様分布(ランダムに 0 から 1 の間の実数を返すモデル)(>>485-486)なら、確率
「一旦入れたら二度と入れ替えない」とか当たり前で、確率変数の定義を誤解しているよ
(なお、確率変数の定義は>>489な)
>>499
>だって実際、現代数学でも時枝問題の数列は
>確率変数じゃなく定数だし
>現代数学では選ぶ列の添数が確率変数ですから
面白い冗談だな
>>500
それ、つっこんでも仕方ないよ
(>>463より)「しかし、勝てる特異な例を作ったところで、数学の理論になっていませんね(あなたに同じ)」
ってこと。誤読しているよ
>>501
> 「箱の中身を確率変数とするのが厳密だ」という数学の証明がないね
証明はいらない
「まったく自由」(下記)だから、出題者の権利です
つまり、サイコロの目2つの和を、箱に入れる
これで、i.i.d. 独立同分布(>>472ご参照)
どの箱の数も確率変数で扱える。それだけですw
参考(>>350より)
スレ47 スレリンク(math板)
時枝問題(数学セミナー201511月号の記事)
「どんな実数を入れるかはまったく自由,
もちろんでたらめだって構わない.」
548:132人目の素数さん
19/09/01 09:20:29.41 uj+Nfmst.net
>>479
>「時枝では確率変数が固定され、それは定数になるのだ」
この言い方は間違ってるね
「時枝記事では箱の中身は定数」
これが正しい言い方
時枝記事では箱の中身は確率変数
つまり、箱の中身は試行毎に入れ替える
という記述があるなら示してほしい
そんな記述はどこにもないから示しようがない筈
549:132人目の素数さん
19/09/01 09:22:12.32 IVtPZNby.net
>>495
> 「数当てに失敗する箱は100個の候補の内の2個以上になることはない」
> に至るまでに、
> 大きなギャップがあるよね
ないですよ
> どの列を選んでも選ばなかった99列の箱を全て開けることから
これで終わっているよ
s1, s2, s3, ... , sn, ... が出題され100列に分けたとする
袋の中に完全代表系が1組入っている
まずはじめに100列から1列選ぶ (Ω = {1, 2, ... , 100})
選ばなかった99列を開けて袋の中の代表元と比較する
選ばなかった99列の各1番目 各列の代表元と一致する個数は99個中0個
選ばなかった99列の各2番目 各列の代表元と一致する個数は99個中0個
...
以下同様に繰り返していくと各列の代表元と一致する個数は増加していくことになるが
一致する個数がk番目で99個中99個になったら選んだ列のk番目の箱で数当てを行う
選んだ列のk番目の箱より後ろを開けて同値類を決定しその代表元から数当てで答える数を得る
(選ばれる箱については改めて>>478を見てみよ)
だから>>490
> 時枝記事はΩ = {1, 2, ... , 100}でいいのでΩ = {d1, d2, ... , d100}ではない
550:132人目の素数さん
19/09/01 09:24:00.76 CU1S7ZwH.net
>>491
>4)このような、素朴な無限次元ベクトル空間で、2つのベクトルv1とv2との大きさを比較した
> ベクトルの大きさは、内積で定義する。一般に、内積は無限大に発散し、大小比較ができない!
時枝解法の大小比較の対象は自然数の値を持つ決定番号であり、自然数全体の集合 N は大小関係について全順序集合なので却下w
このバカはなんで無限次元ベクトル空間の話なんて持ち出したんだ? バカの考えることは意味不明過ぎw
551:132人目の素数さん
19/09/01 09:27:16.25 uj+Nfmst.net
>>482
>第一列の箱が当たる確率は?
時枝記事の問が上記の通りで
「s~1の決定番号が他の列の決定番号どれよりも
大きい確率は1/100に過ぎない」
と書いてあったとした場合、誤りだね
箱の中身が確率変数なら非可測性により確率計算ができない
箱の中身が定数であった場合、そもそも
1. s~1の決定番号が他の列の決定番号どれよりも 大きい場合
2. 1.以外の場合
に分かれるだけで、
1.の場合当たる確率0
2.の場合当たる確率1
ということになるだけ
552:132人目の素数さん
19/09/01 09:28:42.07 CU1S7ZwH.net
>>494
>残念だけどこれが非自明.
>hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない
>そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう
却下
なぜなら、誰も P(d_X≧d_Y)≧1/2 とは言ってないから
そうではなく、P(d_X,d_Yのいずれかをランダムに選択した方≧他方)≧1/2 と言っている これはランダムの定義通りで否定し様が無い
サル学習能力無さ過ぎw
553:132人目の素数さん
19/09/01 09:29:01.13 IVtPZNby.net
>>508
> 出題者の権利です
出題者がスレ主のお望みの方法で数列を作ったとしても逆は言えないんです
回答者は他の方法で数列を作ったと仮定しても数列が同じなら良いのです
回答者の権利です
554:132人目の素数さん
19/09/01 09:37:03.75 uj+Nfmst.net
>>485
>100列に対応する自然数d1,d2,・・・,d100
>これが、
>ランダムに区間[0,1]から選んだ一様な数の数当ての確率
>と同じになる証明がないですよ
そりゃ当然ないよw
だって時枝記事は
「ランダムに区間[0,1]から選んだ一様な数の数当ての確率」
じゃないもの
時枝記事では、箱の中身は定数
だから
「ランダムに区間[0,1]から選んだ一様な数」
なんて設定はない
せいぜい
「箱の中身は区間[0,1]の要素」
というだけで、その要素の選定に一様乱数を使おうがなにしようが
一旦箱を閉めてしまって、中身を入れ替えないのであれば定数
「数の数当ての確率」というところすら実はおかしい
時枝記事では、そもそも当てる箱を固定せず選ばせてるから
「この箱の中身を他の箱の中身の情報だけから当てろ」
という問いなら「数の数当ての確率」といってもいいがね
要するに二つの別々の問題と同じだと思いこむ誤解があるんだよ
555:132人目の素数さん
19/09/01 09:41:56.27 uj+Nfmst.net
>>489
>確率空間が定義されれば、その後「確率」計算を行うために、
>確率変数を定義し、確率分布を定義していく
>�
556:セから、普通に確率として扱える対象には、 >確率変数が定義できて、確率計算ができる 時枝記事での確率空間は{1,…,100}と各点に1/100の重みを与えた測度だよ 数列全体の空間とのその上の測度、ではないな
557:132人目の素数さん
19/09/01 09:43:10.33 uj+Nfmst.net
>>491
>ヒルベルト空間を知っているだろ?
知っていても時枝記事では使わないよ
下手な考え休むに似たり
558:132人目の素数さん
19/09/01 09:44:11.68 CU1S7ZwH.net
>>494
>この、”そもそも分布を持たない可能性すらある”は、
>単にビタリの意味の非可測だけではなく
>”無限大に発散”する非可測の可能性をも、含意していると思うよ(^^
却下
なぜなら、時枝解法での大小比較の対象である決定番号は必ず自然数であり、∞にはならない(∞は自然数ではない)から。
選択公理を仮定すれば商射影R^N→R^N/~の切断の存在が保証されるので、決定番号の定義の正当性が保証される。
決定番号はその定義により必ず自然数である。
サル畜生が理解していないだけ。