19/08/25 13:45:53.66 5ZvpTN/e.net
>>882
ご高説は、結構だ
あなたのお説は、下記だったな
(参考)
スレ28 スレリンク(math板:64番)-
2017/01/23(月)
理解したつもりです。
結局のところ、固定されたいかなるsでもν(s)≧99/100と言えることがポイントですね。
たとえばR^Nとしてテキトウな分布を、戦略として記事とは別の、性質のよくない有限の混合戦略Sを取ったとする。
その戦略とは、たとえばk∈N, 1≦k≦100をサイコロで選び、101番目の箱の中身r_101がr_kに等しいとする戦略。
あるsではν(s)=1/100、また別のsではν(s)=100/100となるかもしれない。
しかしR^Nがフツーの分布であれば、外側の積分(実行できると仮定)を実行したときの値はゼロに近い。
ゼロに近いと結論した外側の積分計算でRの直積分布、つまりは各箱の独立性が顔を出す余地がある。
独立性を考慮すれば、測度計算によりν(s)≧1/100となるsの測度はゼロに近いと即座に言える。
記事の戦略ではν(s)が定数99/100で押さえられているために、外側の積分において独立性は計算に影響を与えない。
(引用終り)
これ、だれっ一人賛同しなかったよなw
論文書いて投稿しなよ
論文掲載されたら、認めてやるよw
おっと、
”独立性を考慮すれば、測度計算によりν(s)≧1/100となるsの測度はゼロに近いと即座に言える”だったね
それ、(>>377より) i.i.d. 独立同分布
”独立性を考慮すれば、i番目以外の周囲の箱をいくら覗いても、i番目の箱は分らないと即座に言える”だな
これが、おれの主張だよ