19/08/23 23:22:13.45 WGfkBzAI.net
>>701
>hに可測性が保証されないので,d_Xとd_Yの可測性が保証されない
>そのためd_Xとd_Yがそもそも分布を持たない可能性すらあるのでP(d_X≧d_Y)≧1/2とはいえないだろう
時枝解法は P(d_X≧d_Y)≧1/2 なんて言ってない。
それどころか P(d_X≧d_Y) について何も言ってない。
時枝解法は P(a≧b)≧1/2 だと言っている。
a とは d_X,d_Y のいずれかをランダムに選択した方、b はもう一方。
d_Xとd_Yが分布を持つか否かはまったく関係ない。
d_Xとd_Yが自然数でありさえすれば P(a≧b)≧1/2 が成り立つ。
ランダム(一様分布)選択だからだ。
おまえランダム(一様分布)がわからんか? 確率の初歩から勉強し直せバカ。