現代数学の系譜 工学物理雑談 古典ガロア理論も読む75at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む75 - 暇つぶし2ch685:現代数学の系譜 雑談 古典ガロア理論も読む
19/08/22 07:10:18.90 W0hCtIJC.net
>>639
つづき
(参考)
URLリンク(ja.wikipedia.org)
ルベーグ測度
(抜粋)
体積には「互いに素な集合の体積は元の体積の和に等しい」という性質(加法性)がある。この性質を保ちながらより複雑な集合に対しても「体積」を定めることができるよう体積の概念を拡張できる。このような拡張は一意である。
実解析、特にルベーグ積分で用いられる。
体積と同様ルベーグ測度は値として ∞ をとりうる。

・二次元の集合 A が、一次元区間 [a, b] と [c, d] の 直積集合(つまり辺が軸に平行な長方形)であれば、A の二次元ルベーグ測度は、一次元ルベーグ測度の積 (b - a)(d - c) に等しい。
・可算集合のルベーグ測度は必ず 0 である。カントール集合は、測度 0 の非可算集合の例である。
URLリンク(ja.wikipedia.org)
数え上げ測度
(抜粋)
集合の元の個数を数えるという方法でその "大きさ"(あるいは "容積")を測る、ルベーグ積分における測度の一種である。
(2. は一つでも有限でないものがあれば両辺が ∞ として一致するという意味で成り立つから、全て有限のときを確かめればよいがこちらも明らかであろう)。
特に、任意の集合 A に対して μ(A) が定義できるので、可測集合族 M としては 2^S 全体をとることができて、(S, 2^S, μ) は測度空間になる。
数え上げ測度が σ-有限であることと集合 S が可算であることは同値になる。
総和は積分である
他の測度との関係
数え上げ測度はすべての点に関するディラック測度の和として表すことができる。反対に、可算集合上の任意の測度の、数え上げ測度に対するラドン・ニコディム微分はその測度のディラック測度の重み付き和としての表示を与えている。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch