現代数学の系譜 工学物理雑談 古典ガロア理論も読む75at MATH
現代数学の系譜 工学物理雑談 古典ガロア理論も読む75 - 暇つぶし2ch629:132人目の素数さん
19/08/21 17:32:48.91 G7FiTaif.net
(>>588の続き)
2):第二段階でドアを開ける前にモンティがランダムに選ぶヤギのドアが1つのとき。このときは
ランダムにヤギのドアを1つ選ぶ方法は1通りで、3つのドアから1つのドアを選ぶ方法は 3C1=3 通りだから、
第二段階でモンティがランダムに選ぶ向こうにヤギがいるドアを選んで開ける確率は 1/3。
このとき第一段階でプレーヤーが景品のドアをランダムに選んでいた方法は 2C1=2 通りで、
本来は第一段階から第二段階だへと進むルールだから、第一段階でプレーヤーが景品のドアをランダムに選んでいる確率は、1/2。
よって、第一段階でプレーヤーが景品のドアをランダムに選び、かつ第二段階でモンティがランダムにヤギのドアを選んで開ける確率は、1/2×1/3=1/6。
その後、第三段階でモンティがヤギのドアを見せた後に、第四段階でプレーヤーがドアを変更すると景品が当たる確率は0だから、
第四段階でプレーヤーがドアを変更して景品が当たる確率は、1/2×1/3×0=0。
1)、2)から、第四段階でプレーヤーがドアを変更して景品が当たる確率は、1×2/3×1+1/2×1/3×0=2/3。
観覧者がゲームを見ているという前提があるから、プレーヤーから見た第四段階でプレーヤーがドアを変更して景品が当たる確率は、2/3。
確率 2/3 は、プレーヤーから見た第四段階でプレーヤーがドアを変更して景品が当たるか外れるか分からない確率 1/2 より大きいから、
プレーヤーにとっては、最後の第四段階でドアを変更する方が景品が当たる確率は高くなる。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch